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Abstract
The extensive clinical and genetic heterogeneity of congenital limb malformation calls for comprehensive genome-wide 
analysis of genetic variation. Genome sequencing (GS) has the potential to identify all genetic variants. Here we aim to 
determine the diagnostic potential of GS as a comprehensive one-test-for-all strategy in a cohort of undiagnosed patients with 
congenital limb malformations. We collected 69 cases (64 trios, 1 duo, 5 singletons) with congenital limb malformations 
with no molecular diagnosis after standard clinical genetic testing and performed genome sequencing. We also developed a 
framework to identify potential noncoding pathogenic variants. We identified likely pathogenic/disease-associated variants 
in 12 cases (17.4%) including four in known disease genes, and one repeat expansion in HOXD13. In three unrelated cases 
with ectrodactyly, we identified likely pathogenic variants in UBA2, establishing it as a novel disease gene. In addition, we 
found two complex structural variants (3%). We also identified likely causative variants in three novel high confidence can-
didate genes. We were not able to identify any noncoding variants. GS is a powerful strategy to identify all types of genomic 
variants associated with congenital limb malformation, including repeat expansions and complex structural variants missed 
by standard diagnostic approaches. In this cohort, no causative noncoding SNVs could be identified.

Introduction

The repertoire of diagnostic tests in human genetics is as 
diverse as the types of genetic alterations they were devel-
oped to detect (Berisha et al. 2020). Through the develop-
ment of Next Generation Sequencing technologies (NGS) 
sequencing has become several orders of magnitude faster 
and cheaper. This has led to an enormous increase in the 
efficiency of genetic testing (Levy and Myers 2016). NGS 
quickly found its way from research applications to the 
clinic: today, panel and exome sequencing are elements 

of the routine diagnostics in genetic medicine (Decipher-
ing Developmental Disorders Study 2017). Despite these 
significant advances, classical genetic testing methods such 
as chromosomal microarray analysis (CMA) and Sanger 
sequencing remain part of the standard diagnostic arsenal. 
This is because NGS-based gene panels often do not detect 
structural variants such as inversions and translocations, or 
fail to determine repeat lengths (Berisha et al. 2020). The 
goal of detecting all types of genetic variation in a single test 
can theoretically be achieved by short-read based genome 
sequencing (GS) (Xue et al. 2015). While there are some 
very encouraging proof of concept studies for the use of GS 
in individuals with intellectual disability (Lindstrand et al. 
2019), GS is not yet part of the clinical routine and there is 
a lack of systematic studies on the benefits of such tests for 
individuals with congenital malformations.

A major limitation of panel and exome sequencing 
approaches is that they usually do not cover 98% of the 
genome which is noncoding, and are, hence, unable to 
detect deep intronic splice variants or intergenic regulatory 

Jonas Elsner and Martin A. Mensah shared first authorship.

Stefan Mundlos and Malte Spielmann shared senior authorship.

 * Stefan Mundlos 
 stefan.mundlos@charite.de

 * Malte Spielmann 
 malte.spielmann@uksh.de

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s00439-021-02295-y&domain=pdf


1230 Human Genetics (2021) 140:1229–1239

1 3

variants. Therefore, over 40% of individuals with genetic 
diseases receive no molecular diagnosis after standard test-
ing (Gilissen et al. 2014). This is likely because the noncod-
ing sequence has largely been ignored despite most nucleo-
tides and single nucleotide variants being noncoding. The 
two main challenges that currently hamper the medical inter-
pretation of noncoding variants are the poor understanding 
of the “regulatory code” of the noncoding genome and the 
large number of noncoding variants in each individual that 
renders classical functional work-up strategies impossible.

In this study, we aimed to determine the diagnostic poten-
tial of GS as a comprehensive one-test-for-all strategy in a 
cohort of 69 unsolved patients with congenital limb mal-
formations. We also attempted to develop a framework to 
prioritize the large number of noncoding variants identified 
in the GS studies by combining mouse genetic and human 
functional epigenetic data with in vivo-validated enhancer 
sequences.

Materials and methods

Study design

Patients affected with malformations of two limbs, or two 
individuals from a family, each affected with a malformation 
of at least one limb were recruited (Supplementary Fig. 1). 
Exclusion criteria included a molecularly established genetic 
diagnosis, a suspected diagnosis of amniotic band syndrome, 
or an isolated fifth finger clinodactyly. A convenience set of 
samples was collected from the patients of the Department 
of Hand Surgery of the Katholisches Kinderkrankenhaus 
Wilhelmstift Hamburg and the Institute of Medical Genetics 
and Human Genetics of the Charité (IMG)—Universitäts-
medizin Berlin. This sample-set was compiled with cases 
that were sent to the IMG by external physicians for diag-
nostic purposes. The sample-set was fixed before conducting 
GS.

Included patients

We included 69 patients in this study (Supplementary 
Table 1). We sequenced the index case and both parents 
in 64 cases, the index and one parent in one case, and only 
the index in four cases (parental DNA was not available for 
testing). In one case, we additionally sequenced a sibling. 
In five cases, one parent showed a limb malformation com-
parable to the index. In one case featuring ectrodactyly and 
apparently unaffected parents and grandparents, a maternal 
grand-uncle was affected, who was also sequenced. In 60 
cases no family member other than the index was reported 
to show a limb malformation.

Phenotyping and conventional genetic testing

Limb malformations were phenotyped based on pho-
tographs and radiographs by a panel of medical profes-
sionals including expert clinical geneticists. Phenotypes 
were described as per Human Phenotype Ontology (HPO) 
terminology.

Based on a patient’s phenotype, genes were selected for 
sequencing by medical geneticists. Sample preparation and 
Sanger-sequencing were performed using standard proce-
dures. High resolution (1 M oligo) CMA was performed as 
described previously (Flöttmann et al. 2018).

Genome sequencing and variant calling

Paired-end PCR-free GS was performed by Macrogen Inc. 
(South-Korea) using a HiSeq X Ten platform. DNA prepa-
ration, sequencing, and sequence data processing were per-
formed according to Macrogen’s standard protocol (coverage 
30× and read length 150 bp).

The FASTQ files were transferred to the Core Unit Bioin-
formatics of the Berlin Institute of Health (CUBI) for variant 
calling. Files were further processed and securely stored in 
the System for Omics Data Analysis and Retrieval (SODAR) 
(Nieminen et al. 2020). GATK HC was used to call simple 
nucleotide variants, while structural variants were called 
using Delly2, PopDel, and ERDS/SV2. Afterwards, vari-
ants were processed and annotated by the VarFish platform 
(Holtgrewe et al. 2020). Variants were mapped according to 
the hg19 reference genome.

Variant filtration

Coding SNVs and SVs

Each index case was filtered as a singleton, regardless of the 
availability of family data. If parental samples were avail-
able, a trio-based filtration approach was additionally per-
formed. Male-index trio-cases were also filtered for hemizy-
gous X-chromosomal variants.

Simple nucleotide variant filtration was performed on the 
VarFish platform (Version v0.17.2) (Holtgrewe et al. 2020). 
We filtered GS data for non-synonymous exonic and splice 
variants using default settings for read depth, allelic bal-
ance, and read quality. Allele counts were set as described 
in Supplementary Table 2. SNVs that passed filtration were 
exported as variant calling files (VCF). For evaluation of 
variant pathogenicity, VCFs were uploaded to MutationDis-
tiller and Exomiser. The first ten results were exported for 
semi-automated, in-depth analysis (see Supplementary 
Fig. 2 for details). We also tested for truncating or probable 
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LoF (CADD > 20) variants affecting the same gene with a 
pLI > 0.9 in at least two independent patients.

Structural variant filtration was performed as described 
in Supplementary Table 3. The minimal size for structural 
variant filtration was 1500 bp. Whenever we obtained more 
than 30 structural variants after initial filtering, we increased 
the number of minimally covered informative reads from 2 
to 5. Each SV passing filtration was judged manually with 
the information provided by the IGV-Browser and UCSC 
(see Supplementary Fig. 3 for details).

All findings were evaluated at weekly clinical meetings.

Analysis of noncoding variants: limb regulome

We defined a limb-specific potential regulome to filter and 
interpret non-coding variants. For this purpose, we created a 
list of 1719 genes involved in embryonic limb development 
based on data from the Mouse Genome Informatics (MGI) 
database and entries in OMIM. We defined the human limb 
regulome as the following: 1. all conserved (phyloP > 1,3) 
variants, 2. those located within the same topologically 
associating domain (TAD) (as determined in human fibro-
blasts (Dixon et al. 2012)) as a limb gene, 3. those that 
were marked by an H3K27 acetylation peak in human limb 
buds (Cotney et al. 2013). We also included the validated 
enhancer elements of the VISTA Enhancer Browser. Coding 
and noncoding SNVs were filtered for rare variants (fre-
quency < 0.1%) and were considered to be potentially affect-
ing the same regulatory element if they were either less than 
300 bp apart or positioned in the same established enhancer.

Whenever we identified rare, potentially pathogenic het-
erozygous coding variants of genes associated with a reces-
sive limb phenotype in individuals featuring at least a partial 
overlap with that phenotype, we also screened for in trans 
conserved non-coding variants with a MAF < 3% affecting 
the same TAD.

Results

We collected a cohort of 69 individuals affected with con-
genital limb malformations. All individuals had previously 
gone through our clinical genetics routine pipeline includ-
ing clinical examination, candidate gene testing, and CMA. 
We then performed GS as a comprehensive one-test-for-all 
strategy.

In total, we identified 333,163,643 single nucleotide 
variants (SNVs) among the 69 sequenced index patients, 
of which 7,020,766 were either coding or flanking coding 
elements by 10 bp or less. 326,142,877 were noncoding 
SNVs, of which 19,362 were rare (gnomAD AF < 0.01). 
21,369 of the coding SNV calls were classified by Jan-
novar to be of at least moderate relevance (missense and 

truncating), and 1429 to be of high relevance (truncating 
only). VarFish filtering returned 5761 SNVs. Filtering by 
Exomizer and MutationTaster identified 433 potentially 
pathogenic coding calls among these, of which 174 were 
high-quality calls suitable for further evaluation.

30,062, SNVs resulted in the potential loss-of-function 
of probably haploinsufficient genes. 49 of these affected 
the same gene in two unrelated index individuals (Sup-
plementary Fig. 2).

We also analyzed the structural variants in 68 of the 69 
index patients. 55 cases were filtered as trios with unaf-
fected parents and moderate filter settings. Five were fil-
tered as trios with another affected relative and moderate 
filter settings. Stricter filter settings were chosen for 9 trios 
because moderate filter settings produced an unmanage-
able amount of SV calls. 3 cases were analyzed as sin-
gletons. Individuals I1, I2, I3 did not yield any results, I4 
was excluded from the SV analysis because too many SVs 
were called even with stricter filter settings due to poor 
data quality.

Of the 1,555,426 SVs, 633 SVs passed the filtering by 
VarFish, of which 222 were inversions, 288 deletions, 76 
duplications, and 47 breakpoints of potential translocations.

417 of these SVs were excluded because they were of 
poor calling quality or because they were inherited from an 
unaffected parent. We then manually inspected the remaining 
216 SVs. Segregation analysis in the parents was performed 
by qPCR after comparing candidate CNVs with known limb 
genes according to the Human Phenotype Ontology, cross-
species phenotype comparison, mouse models, gene expres-
sion data (Cao et al. 2019), limb enhancer elements (Visel 
et al. 2009), and the local topological associating domain 
(TAD) architecture of the locus (Dixon et al. 2012; Cao et al. 
2019). As a result, we identified 30 promising variants (Sup-
plementary Fig. 3).

Variants in four known, limb malformation 
associated genes

We identified pathogenic variants in established disease 
genes in four individuals (I5, I6, I7, I8, Supplementary 
Fig. 4), which we confirmed by Sanger sequencing. These 
included a missense variant in FGFR1, already described 
in the literature (Muenke et  al. 2014), and three previ-
ously undescribed variants in the genes FGFR2, GLI3, and 
BHLHA9. In all four cases, we classified the variants as 
(likely) pathogenic according to the criteria of the Ameri-
can College of Medical Genetics and Genomics (ACMG), 
based on the type of variant and the phenotype of the patient. 
All variants were inherited (note that the mother of I8, was 
not radiographically phenotyped, which is necessary to 
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diagnose mild FGFR2-associated phenotypes (Flöttmann 
et al. 2015)).

Repeat expansions of HOXD13

In individual I9, featuring brachy-poly-syndactyly, we 
detected a repeat expansion by eight alanines on the 
HOXD13 allele inherited from his affected mother, already 
described as pathogenic in the literature (Brison et al. 2014), 
and a polymorphic repeat expansion by only one alanine on 
the paternal HOXD13 allele (Supplementary Fig. 5). These 
findings were confirmed by conventional HOXD13 micro-
satellite analysis.

Structural variants at known disease loci

In individual I10 with bilateral upper and lower limb 
ectrodactyly, we identified an inversion of 105  kb 
(chr10: 103,321,526–103,426,609) f lanked by two 

delet ions (chr10:103,319,219–103,321,525 and 
chr10:103,426,610–103,436,718) at the split-hand foot 
malformation locus 3 (SHFM3) on chr10q24 inherited 
from his unaffected mother (Fig. 1, Supplementary Fig. 6). 
His affected great-uncle also carried the inversion. The 
variant overlaps with the most common duplications asso-
ciated with ectrodactyly (de Mollerat et al. 2003; Klopocki 
et al. 2012). The minimal overlapping region of pathogenic 
SHFM3 duplications includes BTRC , POLL, and DPCD 
(Holder-Espinasse et al. 2019). The inversion described 
here is copy number neutral, suggesting that positional 
effects rather than gene dosage might be responsible for 
the phenotype. It includes a topologically associating 
domain boundary (Holder-Espinasse et al. 2019) and is 
likely to change the enhancer landscape at the SHFM3 
locus leading to FGF8 misregulation causing ectrodactyly.

In individual I11, featuring bilateral mirror-image poly-
dactyly of the hands and feet (Fig. 2a), CMA had detected 
a 300 kb amplification on chr7q36.1. We initially classified 

Fig. 1  Inversion-deletion at 
SHFM3 locus: a pedigree, 
N.T. not tested. b feet of 
grand-uncle (II-3). c hands 
and feet of the index patient 
(IV-1). d genomic architecture 
of SHFM3. e GS data of the 
family, note the presence of an 
inversion (chr10: 103,321,526–
103,426,609) flanked by 
deletions (chr10:103,319,219–
103,321,525 and 
chr10:103,426,610–
103,436,718) on either site
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the variant as a variant of unknown significance, because 
the individual’s phenotype did not match that of an indi-
vidual with muscular hypertrophy, reported to have a sim-
ilarly sized and positioned duplication (Kroeldrup et al. 
2012).

The amplification was identified again using GS. How-
ever, sequencing revealed that it was part of a complex 
structural variant containing two overlapping duplications 
(dup1 and dup2) at chr7q36.1 (Supplementary Fig.  7). 
The smaller dup2 shares the central breakpoint with dup1. 
The distal breakpoint of dup2 is positioned within dup1 in 
intron 1 of SHH, at chr7:155,603,964. GS data showed that 
the duplicons were not positioned in tandem, but are both 
fused to sequences originating from chr9p24.1. The distal 
breakpoint of dup2 was fused to intron 5 of GLDC and the 
distal breakpoint of dup1 to intron 8 of KDM4C (Fig. 2c; 
Supplementary Fig. 7). Analysis of the parents by Sanger 
sequencing showed that the structural variant occurred de 
novo in individual I11.

The mirror-image polydactyly of individual I11 shows 
striking phenotypic overlap with Laurin–Sandrow syndrome, 
which is caused by duplications of the SHH regulator ZRS, 
positioned in intron 5 of LMBR1 on chr7p36.3, resulting in 
ectopic expression of SHH in the embryonic limb (Lohan 

et al. 2014). Both duplications do not include the ZRS and 
duplications of SHH itself have not been described to cause 
Laurin–Sandrow syndrome. However, a duplicated fragment 
containing SHH that is inserted into another domain, as 
observed in the de novo SV of I11, makes an ectopic expres-
sion of SHH in the embryonic limb very likely. We assume 
that the formation of an SHH-KDM4C neo-TAD, resulting 
in the misregulation of SHH by KDM4C-enhancers in the 
limb mesenchyme (note the known expression of KDM4C in 
embryonic vertebrate limb buds) is the most likely explana-
tion for such an ectopic SHH-expression (Fig. 2b).

Therefore, we re-classified the complex SV involving 
SHH in individual I11 with bilateral mirror-image polydac-
tyly as causative.

Establishing UBA2 as a novel disease gene

We also identified variants in new candidate genes. Two 
unrelated individuals with isolated split hand malformation 
featured different heterozygous frameshift variants in the 
ubiquitin-like modifier-activating enzyme 2 (UBA2) (Fig. 3a, 
b). Individual I12 harboured the de novo variant NM_00
5499.3(UBA2):c.1355_1356delTG;p.(Val452Alafs*6). 

Fig. 2  a Pedigree and phe-
notype of individual I11. b 
Potential neo-TAD at the fusion 
site. c Breakpoint and fusion 
sites between regions from chr7 
and chr9
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Individual I13 inherited the variant NM_005499.3(UBA
2):c.34_37delGCTG;p.(Ala12Argfs*34) from his appar-
ently unaffected mother (no radiographs of her hands were 
available).

We classified the pathogenicity of these variants 
according to the ACMG guidelines. Both are null vari-
ants of UBA2 which has a pLI-score of 1 (PVS1). 
c.1355_1356delTG occurred de novo in an individual with 
a negative family history (PS2). The variants are absent 
from the 1000 Genomes Project and the Exome Aggrega-
tion Consortium databases (PM2) and were predicted to be 

pathogenic by MutationTaster (PP3). UBA2 variants have 
recently been described in individuals with ectrodactyly 
(Chowdhury et al. 2014; Abe et al. 2018; Yamoto et al. 
2019; Aerden et al. 2020). Hence, we regarded UBA2 as a 
disease-associated gene and these variants as pathogenic 
(1PVS(+ 1PS) + 1PM + 1PP).

These findings prompted subsequent Sanger sequencing 
of UBA2 in 24 unrelated families with ectrodactyly, who 
have been tested negative for variants in the established 
SHFM loci/genes. In one individual (I14) with unilateral 
split-hand malformation (Fig. 3c), we identified the missense 

Fig. 3  UBA2 variants and ectrodactyly. a–c Patients with likely path-
ogenic UBA2 variants upper panels: pedigrees, N.T.: not tested; mid-
dle panels: characteristic limb malformations, lower panels: sequenc-
ing data. d conservation of Asp50 mutated in individual I14, numbers 

indicate amino acid residues, yellow bars highlight positions tested 
by Olsen et al. to cause loss of function when substituted by alanine 
(Olsen et al. 2010)
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variant NM_005499.3(UBA2):c.149A > G;p (Asp50Gly). 
The daughter of I14 and her son also feature ectrodactyly 
(PP4), but were unavailable for testing. Asp50 is part of a 
consecutive 15 amino acid sequence (Ile47 to Phe61) shared 
amongst all nephrozoan UBA2 orthologues (Fig. 3d). Olsen 
et al. showed that variants of residues (Asn56Ala, Leu57Ala, 
Arg59Ala) of this element result in loss of UBA2 function, 
and found that the very residue mutated in individual I14, 
Asp50, forms hydrogen bonds with Asn177 and Thr178 
essential for proper UBA2 folding and thus its function 
(PS3) (Olsen et al. 2010). The variant was also absent in 
the databases (PM2) and predicted to be pathogenic by 
MutationTaster (PP3). Hence, we classified these variants 
as likely pathogenic according to the ACMG’s guidelines 
(1PS + 1PM + 2PP).

Novel candidate genes

Our analysis also revealed several novel, high-confidence 
candidate genes associated with limb defects. In individual 
I15 featuring severe mirror image foot polydactyly, we found 
a de novo frameshift variant in the gene encoding the high 
mobility group box 1 protein (HMGB1) (Supplementary 
Fig. 8). NM_002128.7(HMGB1):c.551_554delAGAA;p.
(Lys184Argfs*44) leads to the replacement of the protein’s 
entire C-terminal 30-residue acidic tail by 41 other unrelated 
residues. The tail is normally formed by an Asp/Glu-repeat 
element, which is highly conserved among HMGB1 ortho-
logues. This repeat element stabilizes HMGB1’s secondary 
structure and is crucial for its DNA-bending capacity (Bel-
grano et al. 2013; Anggayasti et al. 2020). The variant is not 
only absent from the databases but also no variant listed in 
gnomAD contains an amino acid residue except Glu or Asp 
in the acidic tail domain. HMGB1 has a pLI score of 1. In 
mouse and zebrafish studies, HMGB1 has been shown to 
regulate digit number during embryonic limb development 
by interacting with WNT, BMP, and SHH (Itou et al. 2011). 
We, therefore, consider HMGB1 to be a novel candidate 
gene for mirror image foot polydactyly.

Individual I16, who featured short stature, absent dis-
tal phalanges of the 5th fingers and toes, and dysplastic 
middle phalanges of the toes carried a de novo missense 
variant in the gene encoding semaphorin 3D (SEMA3D) 
(Supplementary Fig. 9). NM_152754.3(SEMA3D):c.191
8G > A;p.(Asp640Asn) is absent from the 1000 Genomes 
Project database and is listed only 4 times in the Genome 
Aggregation Database (gnomAD). The Asp640 residue in 
the immunoglobulin-like domain of SEMA3D is highly con-
served amongst vertebrates. The variant is predicted to be 
pathogenic by MutationTaster. SEMA3D regulates neural 
crest cell differentiation and is involved in the organogen-
esis of the heart (Sanchez-Castro et al. 2015), parathyroid 
gland (Singh et al. 2019), and, notably, limbs (Govindan 

et al. 2016). We, therefore, consider it a candidate gene for 
short stature with limb abnormalities.

In individual I17 we identified a paternally inherited 
frameshift variant in the aldehyde dehydrogenase 1 fam-
ily member A2 gene (ALDH1A2) encoding retinaldehyde 
dehydrogenase 2 (Supplementary Fig.  10). Both, the 
patient and her father feature isolated cutaneous syndac-
tyly of the fingers III–IV and the toes II–III. The variant 
NM_003888.4(ALDH1A2):c.35delT;p.(Val12Glyfs*31) is 
absent from the databases and is predicted to be disease-
causing by MutationTaster. ALDH1A2 is a direct target of 
HOXA13 and plays a key role in vertebrate digit develop-
ment by regulating, in particular, interdigital programmed 
cell death (Shou et al. 2013). Rescued ALDH1A2 knockout 
mice show reduced interdigital cell death and thus impaired 
digit separation during limb development resulting in 
syndactyly (Zhao et al. 2010). It is, therefore, likely that 
ALDH1A2:c.35delT caused the phenotype of syndactyly in 
individual I17 and her father.

Identification of noncoding variants

So far, the interpretation of disease-related variation has 
been focused on protein-coding DNA and the identification 
of variants that directly result in the disruption of specific 
gene functions.

Here, we aimed to develop a framework to prioritize a 
large number of noncoding variants from GS studies, by 
combining mouse genetic and human functional epigenetic 
data with in vivo-validated enhancer sequences. We then 
defined a limb-specific regulome that we used to filter all 
noncoding variants (Materials and Methods). Our poten-
tially disease-relevant limb-specific regulome consists of 
5,591,007 sites covering in total 7,294,220 bp, i.e. 0.24% of 
the human genome (hg19).

Overall, we identified 19,362 rare noncoding SNVs in 
the 69 index patients, of which 143 were located within the 
limb regulome (Fig. 4). First, we focused on the de novo 
variants and identified 6 calls located in potential regulatory 
elements. Two variants were excluded because they were 
called in cases with (likely) pathogenic coding or structural 
variants.

Individual I18 presenting with bilateral syndactyly of fin-
gers II-V featured the de novo call chr1:41948304AAG > A 
in intron 2 of EDN2. The position shows increased acety-
lation of H3K27 in human limb buds. The 2 bp deletion 
also removes one element of a 6-AG-repeat whose length is 
not conserved in vertebrates. Furthermore, EDN2 encodes 
endothelin 2, a potent vasoconstrictor with no evident link 
to limb development.

Individual I19 showing upper limb amelia fea-
tured three calls (chr5:157285900CAC GTG GG > C, 
chr5:157285909CTCGG > C, chr5:157285915CAC AAC 
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TG > C) referring to the same indel in intron 1 (15 bp 
downstream of the first exon–intron boundary) of CLINT1. 
However, CLINT1 shows only a moderate pLI score (0.54) 
and there is no evidence other than increased H3K27ac 
marks of its promoter region in human limb buds linking 
it to limb development.

We were not able to identify any rare variants in vali-
dated VISTA enhancers that showed enhancer activity in 
the limb bud.

Next, we focused on noncoding variants that were 
located close to one another in more than one case. In 
total, 3425 rare noncoding variants in the unsolved cases 
were positioned 300 bp or less apart from a variant in 
another unsolved case. 16 of these calls were located 
within the limb regulome, but in five of these variants, the 
other variant was positioned outside of the limb regulome.

In two cases both variants were positioned within the 
limb regulome and within 300 bp: individual I21 and indi-
vidual I22, both showing finger syndactyly, harbored the 
overlapping deletions chr22:24552064GGG GGC CGG 
GAC TGG GGC CGG GAC T > G and chr22:24552086ACT 
GGG GCC GGG G > A, respectively. The deletions are posi-
tioned in intron 29 of CABIN1, in an evolutionarily par-
tially conserved element, that shows increased H3K27ac 
marks in human embryonic limb buds. However, both 
deletions were inherited from unaffected parents.

Eight of the close variants were double hits (i.e. we 
detected rare calls not in just one but two index patients at 
four positions of the potential limb regulome). However, 
none of these four pairs of index patients showed overlap-
ping phenotypes.

We identified no coding variant of a known limb disease 
gene in trans with a conserved, rare noncoding variant of 
the same TAD.

In summary, despite extensive efforts, we were not able 
to identify any noncoding SNVs that showed convincing 
evidence to be causal in congenital limb malformations.

Discussion

In this study, we set out to determine the potential of 
GS as a comprehensive diagnostic tool to determine all 
kinds of genetic variants associated with congenital limb 
malformation.

In our cohort of patients with congenital limb malforma-
tions, GS was able to detect both previously described and 
novel causative genetic variants in already established limb 
malformation associated genes. In addition, it enabled the 
identification of three candidate genes and the independ-
ent verification of the novel disease gene UBA2 for causing 
ectrodactyly (Yamoto et al. 2019). Our approach was able to 
detect SNVs and structural variants. Finally, GS proved to be 
a powerful strategy to identify genomic variants previously 
missed by most other approaches, including repeat expan-
sions and complex structural variants. In total, we identified 
variants that we consider to be likely pathogenic/disease-
associated in 12 of 69 cases (17.4%). This diagnostic yield 
is comparable to the recent landmark study conducted by 
the British National Health Service that used GS in cohorts 
with other congenital disease entities (Turro et al. 2020). A 
clear advantage of GS compared to most other technologies 
is the ability to detect copy number neutral variants and to 
gain position information on CNVs. In our cohort of only 69, 
we were able to detect two complex variants, an inversion 
at the FGF8 locus and a translocated triplication including 
the SHH gene. Both were missed by standard technologies. 
Further research is necessary to clarify their exact patho-
mechanisms. The variants identified in the genes HMGB1, 
SEMA3D and ALDH1A2 are all likely to cause loss of func-
tion. The genes were previously associated with vertebrate 
limb development in animal studies and the variants either 
arose de novo or segregate with the respective phenotype. 
However, we could not identify unrelated individuals featur-
ing comparable variants in these candidate genes and similar 
phenotypes. Future research is necessary to identify such 
to establish the described candidates as disease genes. Our 
findings once again highlight the role of GS as an attractive 

Fig. 4  Pipeline of noncoding data analysis
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one-test-for-all strategy for clinically very heterogeneous 
cohorts such as congenital malformation syndromes or intel-
lectual disability (Gilissen et al. 2014; Turro et al. 2020). 
The total cost of the various conventional tests currently 
used in clinical routine far exceeds that of trio GS.

One of the main challenges of GS data is the medical 
interpretation of changes in the noncoding DNA. While most 
clinical GS studies tend to ignore noncoding SNVs (Gilissen 
et al. 2014) there are recent anecdotal reports of noncoding 
variants as the cause of Mendelian disorders (Lettice et al. 
2003; Jeong et al. 2008; Albers et al. 2012; Bhatia et al. 
2013; Weedon et al. 2014; Bae et al. 2014), although there 
is no established systematic approach, yet. Therefore, we 
set out to develop a framework to prioritize such noncoding 
variants associated with congenital limb malformation. We 
used a combinatorial approach of mouse and human epige-
netic data, in vivo validated enhancer sequences, knock-out 
mice, and the recent knowledge about 3D genome folding, 
and the cis-regulatory architecture of the genome to define 
a limb regulome. This limb regulome consists of 0.24% of 
the genome and includes all known in vivo-validated limb 
enhancer elements. Contrary to our expectation, we could 
only identify candidate loci, but no definitely pathogenic 
noncoding variants. These findings are in stark contrast to 
our recent study where we demonstrated that CNVs affecting 
noncoding regulatory elements are a major cause of congeni-
tal limb malformations (Flöttmann et al. 2018).

While our results suggest that GS is sensitive to classi-
cal sequence variants, it is noteworthy that the method can-
not detect epigenetic variants. Epimutations (e.g. imprint-
ing defects) are known to cause inheritable human disease. 
However, to our knowledge, no epimutation has been linked 
to congenital limb malformation yet.

Tools for the analysis of GS data are continuously being 
developed further and the precision of algorithms to call 
structural variants can certainly be improved. We expect the 
diagnostic rate to increase steadily with the accuracy of the 
instruments invoked to analyze GS data.

Supplementary Information The online version contains supplemen-
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