47 research outputs found

    String and M-theory: answering the critics

    Full text link
    Using as a springboard a three-way debate between theoretical physicist Lee Smolin, philosopher of science Nancy Cartwright and myself, I address in layman's terms the issues of why we need a unified theory of the fundamental interactions and why, in my opinion, string and M-theory currently offer the best hope. The focus will be on responding more generally to the various criticisms. I also describe the diverse application of string/M-theory techniques to other branches of physics and mathematics which render the whole enterprise worthwhile whether or not "a theory of everything" is forthcoming.Comment: Update on EPSRC. (Contribution to the Special Issue of Foundations of Physics: "Forty Years Of String Theory: Reflecting On the Foundations", edited by Gerard 't Hooft, Erik Verlinde, Dennis Dieks and Sebastian de Haro. 22 pages latex

    Classical Sphaleron Rate on Fine Lattices

    Get PDF
    We measure the sphaleron rate for hot, classical Yang-Mills theory on the lattice, in order to study its dependence on lattice spacing. By using a topological definition of Chern-Simons number and going to extremely fine lattices (up to beta=32, or lattice spacing a = 1 / (8 g^2 T)) we demonstrate nontrivial scaling. The topological susceptibility, converted to physical units, falls with lattice spacing on fine lattices in a way which is consistent with linear dependence on aa (the Arnold-Son-Yaffe scaling relation) and strongly disfavors a nonzero continuum limit. We also explain some unusual behavior of the rate in small volumes, reported by Ambjorn and Krasnitz.Comment: 14 pages, includes 5 figure

    Chern-Simons Number Diffusion and Hard Thermal Loops on the Lattice

    Get PDF
    We develop a discrete lattice implementation of the hard thermal loop effective action by the method of added auxiliary fields. We use the resulting model to measure the sphaleron rate (topological susceptibility) of Yang-Mills theory at weak coupling. Our results give parametric behavior in accord with the arguments of Arnold, Son, and Yaffe, and are in quantitative agreement with the results of Moore, Hu, and Muller.Comment: 43 pages, 6 figure

    Continuum Gauge Fields from Lattice Gauge Fields

    Full text link
    On the lattice some of the salient features of pure gauge theories and of gauge theories with fermions in complex representations of the gauge group seem to be lost. These features can be recovered by considering part of the theory in the continuum. The prerequisite for that is the construction of continuum gauge fields from lattice gauge fields. Such a construction, which is gauge covariant and complies with geometrical constructions of the topological charge on the lattice, is given in this paper. The procedure is explicitly carried out in the U(1)U(1) theory in two dimensions, where it leads to simple results.Comment: 16 pages, HLRZ 92-3

    The Sphaleron Rate in SU(N) Gauge Theory

    Full text link
    The sphaleron rate is defined as the diffusion constant for topological number NCS = int g^2 F Fdual/32 pi^2. It establishes the rate of equilibration of axial light quark number in QCD and is of interest both in electroweak baryogenesis and possibly in heavy ion collisions. We calculate the weak-coupling behavior of the SU(3) sphaleron rate, as well as making the most sensible extrapolation towards intermediate coupling which we can. We also study the behavior of the sphaleron rate at weak coupling at large Nc.Comment: 18 pages with 3 figure
    corecore