11 research outputs found
LOFAR sparse image reconstruction
The LOw Frequency ARray (LOFAR) radio telescope is a giant digital phased array interferometer with multiple antennas distributed in Europe. It provides discrete sets of Fourier components of the sky brightness. Recovering the original brightness distribution with aperture synthesis forms an inverse problem that can be solved by various deconvolution and minimization methods Aims. Recent papers have established a clear link between the discrete nature of radio interferometry measurement and the "compressed sensing" (CS) theory, which supports sparse reconstruction methods to form an image from the measured visibilities. Empowered by proximal theory, CS offers a sound framework for efficient global minimization and sparse data representation using fast algorithms. Combined with instrumental direction-dependent effects (DDE) in the scope of a real instrument, we developed and validated a new method based on this framework Methods. We implemented a sparse reconstruction method in the standard LOFAR imaging tool and compared the photometric and resolution performance of this new imager with that of CLEAN-based methods (CLEAN and MS-CLEAN) with simulated and real LOFAR data Results. We show that i) sparse reconstruction performs as well as CLEAN in recovering the flux of point sources; ii) performs much better on extended objects (the root mean square error is reduced by a factor of up to 10); and iii) provides a solution with an effective angular resolution 2-3 times better than the CLEAN images. Conclusions. Sparse recovery gives a correct photometry on high dynamic and wide-field images and improved realistic structures of extended sources (of simulated and real LOFAR datasets). This sparse reconstruction method is compatible with modern interferometric imagers that handle DDE corrections (A- and W-projections) required for current and future instruments such as LOFAR and SK
LOFAR Sparse Image Reconstruction
Context. The LOw Frequency ARray (LOFAR) radio telescope is a giant digital
phased array interferometer with multiple antennas distributed in Europe. It
provides discrete sets of Fourier components of the sky brightness. Recovering
the original brightness distribution with aperture synthesis forms an inverse
problem that can be solved by various deconvolution and minimization methods
Aims. Recent papers have established a clear link between the discrete nature
of radio interferometry measurement and the "compressed sensing" (CS) theory,
which supports sparse reconstruction methods to form an image from the measured
visibilities. Empowered by proximal theory, CS offers a sound framework for
efficient global minimization and sparse data representation using fast
algorithms. Combined with instrumental direction-dependent effects (DDE) in the
scope of a real instrument, we developed and validated a new method based on
this framework Methods. We implemented a sparse reconstruction method in the
standard LOFAR imaging tool and compared the photometric and resolution
performance of this new imager with that of CLEAN-based methods (CLEAN and
MS-CLEAN) with simulated and real LOFAR data Results. We show that i) sparse
reconstruction performs as well as CLEAN in recovering the flux of point
sources; ii) performs much better on extended objects (the root mean square
error is reduced by a factor of up to 10); and iii) provides a solution with an
effective angular resolution 2-3 times better than the CLEAN images.
Conclusions. Sparse recovery gives a correct photometry on high dynamic and
wide-field images and improved realistic structures of extended sources (of
simulated and real LOFAR datasets). This sparse reconstruction method is
compatible with modern interferometric imagers that handle DDE corrections (A-
and W-projections) required for current and future instruments such as LOFAR
and SKAComment: Published in A&A, 19 pages, 9 figure
LOFAR sparse image reconstruction
International audienceContext. The LOw Frequency ARray (LOFAR) radio telescope is a giant digital phased array interferometer with multiple antennas distributed in Europe. It provides discrete sets of Fourier components of the sky brightness. Recovering the original brightness distribution with aperture synthesis forms an inverse problem that can be solved by various deconvolution and minimization methods. Aims. Recent papers have established a clear link between the discrete nature of radio interferometry measurement and the " compressed sensing " (CS) theory, which supports sparse reconstruction methods to form an image from the measured visibilities. Empowered by proximal theory, CS offers a sound framework for efficient global minimization and sparse data representation using fast algorithms. Combined with instrumental direction-dependent effects (DDE) in the scope of a real instrument, we developed and validated a new method based on this framework. Methods. We implemented a sparse reconstruction method in the standard LOFAR imaging tool and compared the photometric and resolution performance of this new imager with that of CLEAN-based methods (CLEAN and MS-CLEAN) with simulated and real LOFAR data. Results. We show that i) sparse reconstruction performs as well as CLEAN in recovering the flux of point sources; ii) performs much better on extended objects (the root mean square error is reduced by a factor of up to 10); and iii) provides a solution with an effective angular resolution 2−3 times better than the CLEAN images. Conclusions. Sparse recovery gives a correct photometry on high dynamic and wide-field images and improved realistic structures of extended sources (of simulated and real LOFAR datasets). This sparse reconstruction method is compatible with modern interferometric imagers that handle DDE corrections (A-and W-projections) required for current and future instruments such as LOFAR and SKA
Sparse representations and convex optimization as tools for LOFAR radio interferometric imaging
International audienceCompressed sensing theory is slowly making its way to solve more and more astronomical inverse problems. We address here the application of sparse representations, convex optimization and proximal theory to radio interferometric imaging. First, we expose the theory behind interferometric imaging, sparse representations and convex optimization, and second, we illustratetheir application with numerical tests with SASIR, an implementation of the FISTA, a ForwardBackward splitting algorithm hosted in a LOFAR imager. Various tests have been conducted in Garsden et al., 2015. The main results are: i) an improved angular resolution (super resolution of a factor ≈ 2) with point sources as compared to CLEAN on the same data, ii) correct photometrymeasurements on a field of point sources at high dynamic range and iii) the imaging of extended sources with improved fidelity. SASIR provides better reconstructions (five time less residuals) of the extended emission as compared to CLEAN. With the advent of large radiotelescopes, there is scope for improving classical imaging methods with convex optimization methods combined with sparse representations