656 research outputs found

    A technique for determining cloud free vs cloud contaminated pixels in satellite imagery

    Get PDF
    Since the first earth orbiting satellite sent pictures of the earth back to them, atmospheric scientists have been focused on the possibilities of using that information as both a forecasting tool and as a meteorological research tool. With the latest generation of Geostationary Operational Environmental Satellites (GOES) now entering service, that view of the earth yields views at a frequency and resolution never before available. These satellites have imagers with a five band multi-spectral capability with high spatial resolution. In addition, the sounder has eighteen thermal infrared (IR) channels plus one low-resolution visible band. With a resolution as small as one kilometer, GOES provides scientists with a powerful eye on the atmosphere. Menzel and Purdom (1994) detail both the imager and sounder capability as well as other systems on the GOES satellites. Immediately apparent in the visible channel are the patterns of clouds swirling over both oceans and continents. These clouds range in size from huge planetary systems covering thousands of kilometers to puffy fair weather cumulus clouds on the order of half a kilometer in size. With the IR sensors temperature patterns are observed. High clouds appear very cold, while low stratus field show temperatures near that of the surface. The surface, in turn, generally appears warmer than the clouds. It would seem then a simple manner to determine cloud and surface temperature from the imagery, but such is not the case. While most of the atmospheric constituents are well mixed and homogeneous, water vapor is not. The water molecule, because of its unique structure and vibration modes, affects the transmittance of the atmosphere most notably in the infrared regions. There are regions of the IR spectrum where water vapor acts as a strong absorber, and at others it is nearly transparent. The transparent wavelengths are called windows, and one such window occurs at 11.2 microns. Adjacent to this window at 12.7 microns which is strongly absorbed by water vapor. These two wavelengths form what is known as a split window, the utility of which was used. Using the linearized form of the radiative transfer equation, they were able to use the split window to determine the amount of water vapor present in the atmosphere. Jedlovec developed the physical split-window (PSW) technique which determines the integrated water content (IWC). The PSW method using Visible Infrared Spin Scan Radiometer (VISSR) Atmospheric Sounder (VAS) found on the older versions of the GOES satellites was used. Recently, Jedlovec and colleagues have been attempting to apply the PSW method using full disk IR imagery obtained by the new generation of GOES satellites. IWC is essential for improved analysis and prediction of convective storms which have been observed to develop in regions of both strong and rapidly evolving moisture gradients. It has also been used in the prediction of clouds and precipitation

    I\u27ll Never Grow Tired Of Waiting

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/5872/thumbnail.jp

    Wigner crystal of a two-dimensional electron gas with a strong spin-orbit interaction

    Get PDF
    The Wigner-crystal phase of two-dimensional electrons interacting via the Coulomb repulsion and subject to a strong Rashba spin-orbit coupling is investigated. For low enough electronic densities the spin-orbit band splitting can be larger than the zero-point energy of the lattice vibrations. Then the degeneracy of the lower subband results in a spontaneous symmetry breaking of the vibrational ground state. The 60∘−60^{\circ}-rotational symmetry of the triangular (spin-orbit coupling free) structure is lost, and the unit cell of the new lattice contains two electrons. Breaking the rotational symmetry also leads to a (slight) squeezing of the underlying triangular lattice.Comment: 5 pages + appendix, 3 figures, minor improvements to the tex

    Quantized charge pumping by surface acoustic waves in ballistic quasi-1D channels

    Full text link
    Adiabatic pumping of electrons induced by surface acoustic waves (SAWs) in a ballistic quasi-1D quantum channel is considered using an exactly solvable tight-binding model for non-interacting electrons. The single-electron degrees of freedom, responsible for acoustoelectric current quantization, are related to the transmission resonances. We study the influence of experimentally controllable parameters (SAW power, gate voltage, source-drain bias, amplitude and phase of a secondary SAW beam) on the plateau-like structure of the acoustoelectric current. The results are consistent with existing experimental observations.Comment: 11 pages, 8 figure

    Transport through molecular junctions with a nonequilibrium phonon population

    Full text link
    The calculation of the nonlinear conductance of a single-molecule junction is revisited. The self energy on the junction resulting from the electron-phonon interaction has at low temperatures logarithmic singularities (in the real part) and discontinuities (in the imaginary one) at the frequencies corresponding to the opening of the inelastic channels. These singularities generate discontinuities and logarithmic divergences (as a function of the bias voltage) in the low-temperature differential conductance around the inelastic thresholds. The self energy also depends on the population of the vibrational modes. The case of a vibrating free junction (not coupled to a thermal bath), where the phonon population is determined by the bias voltage is examined. We compare the resulting zero-temperature differential conductance with the one obtained for equilibrated phonons, and find that the difference is larger the larger is the bare transmission of the junction and the product of the electron dwell time on the junction with the phonon frequency.Comment: 4 page
    • …
    corecore