1,764 research outputs found

    Shield weight optimization using Monte Carlo transport calculations

    Get PDF
    Outlines are given of the theory used in FASTER-3 Monte Carlo computer program for the transport of neutrons and gamma rays in complex geometries. The code has the additional capability of calculating the minimum weight layered unit shield configuration which will meet a specified dose rate constraint. It includes the treatment of geometric regions bounded by quadratic and quardric surfaces with multiple radiation sources which have a specified space, angle, and energy dependence. The program calculates, using importance sampling, the resulting number and energy fluxes at specified point, surface, and volume detectors. Results are presented for sample problems involving primary neutron and both primary and secondary photon transport in a spherical reactor shield configuration. These results include the optimization of the shield configuration

    Effect of shield weight of adding a fixed-position containment vessel in the unit shield of a 250-megawatt mobile reactor

    Get PDF
    UNAMIT - computer code for calculating tungsten-water unit shield weights for 250 megawatt reactor

    Optimized 4 pi spherical shell depleted uranium-water shield weights for 200 to 550-megawatt reactors

    Get PDF
    Optimization calculations to determine minimum 4 pi spherical-shell weights were performed at 200-, 375-, and 550-megawatt-thermal reactor power levels. Monte Carlo analyses were performed for a reactor power level corresponding to 375 megawatts. Power densities for the spherical reactor model used varied from 64.2 to 256 watts per cubic centimeter. The dose rate constraint in the optimization calculations was 0.25 mrem per hour at 9.14 meters from the reactor center. The resulting shield weights were correlated with the reactor power levels and power densities by a regression analysis. The optimum shield weight for a 375-megawatt, 160-watt-per-cubic-centimeter reactor was 202,000 kilograms

    Incorporation of Functionalized Polyhedral Oligomeric Silsesquioxane Nanomaterials as Reinforcing Agents for Impact Ice Mitigating Coatings

    Get PDF
    In-flight, aircraft are exposed to a wide range of environments. One commonly exposed environment are clouds containing super-cooled water droplets. These water drop- lets exist in a metastable state below the freezing point of water, in the range of 0 to -20C. As the vehicle impacts the droplets, latent heat is released and within milliseconds the droplets convert to ice. This process is referred to as impact icing or in-flight icing.1 Impact icing is a major concern for aircraft since it can lead to degraded aerodynamic performance and, if left un- treated, can lead to loss of the vehicle. Active approaches (i.e., pneumatic boots, heated air ducts) typically utilized in mitigating in-flight ice accretion significantly increases vehicle weight and cannot be applied to all aircraft.1-3 A passive approach based on coatings is desired, but durability issues are a concern, especially on the wing leading edge.3 Nanomaterials have been shown to afford significant improvement in coating and composite physical properties at low loading levels.4 In this study, Polyhedral Oligomeric Silsesquioxane (POSS) nanomaterials have been shown to increase coating durability. Also, with wide variety of functionalities present on the arm structure, POSS nanomaterials have been shown to readily alter coating surface chemistry to mitigate impact ice adhesion from -16 to -8C in a simulated in-flight icing environment

    Apparent movement phenomena on CRT displays - Threshold determinations of apparent movements of pulsed light sources

    Get PDF
    Apparent movement phenomena on cathode ray tube displays - threshold determinations of apparent movements of pulsed light source

    Patch Plate Materials Compatibility Assessment

    Get PDF
    Lunar dust proved to be a greater problem during the Apollo missions than was originally anticipated. The highly angular, charged dust particles stuck to seals, radiators, and visors; clogged mechanisms; and abraded space suits. As reported by Apollo 12 astronaut Pete Conrad "We must have had more than a hundred hours suited work with the same equipment, and the wear was not as bad on the training suits as it is on these flight suits in just the eight hours we were out.". Dust clinging to surfaces was also transport-ed into habitable spaces leading to lung and eye irritation of the astronauts. The Apollo astronauts were on the Lunar surface less than 24 hours and experienced many dust related problems. With the Artemis program, we are planning longer stays on the surface, with more activities that have the potential to put the astronauts and equipment in contact with greater quantities of Lunar dust. The success of these missions will depend on our understanding of material interactions with Lunar dust and the development of ways to mitigate dust effects in cases where exposure to dust will lead to failure of components, unacceptable loss of power or thermal control, unacceptable loss of visibility, or health issues. Through the Lunar Surface In-novation Initiative (LSII), we are initiating a Patch Plate Materials Compatibility Assessment project. The overall goal of the three year project is to develop passive approaches to mitigate Lunar dust adhesion to surfaces for technologies that are currently at TRL levels 2-3 to bring them to TRL level 5 through ground-based assessment, culminating in a demonstration flight experiment on a Commercial Lunar Payload Services (CLPS) lander in 2022-2023. This paper discusses the detailed technical objectives and approach for this project. References: Gaier, J.R. "The Effects of Lunar Dust on EVA Systems During the Apollo Missions," NASA/TM-2005-213610/REV1, (2005), Apollo 12 Technical Crew Debriefing, December 1, 1969, pp. 10-54

    Flow Resistance Dynamics in Step-pool Channels: 2. Partitioning Between Grain, Spill, and Woody Debris Resistance

    Get PDF
    In step-pool stream channels, flow resistance is created primarily by bed sediments, spill over step-pool bed forms, and large woody debris (LWD). In order to measure resistance partitioning between grains, steps, and LWD in step-pool channels we completed laboratory flume runs in which total resistance was measured with and without grains and steps, with various LWD configurations, and at multiple slopes and discharges. Tests of additive approaches to resistance partitioning found that partitioning estimates are highly sensitive to the order in which components are calculated and that such approaches inflate the values of difficult-to-measure components that are calculated by subtraction from measured components. This effect is especially significant where interactions between roughness features create synergistic increases in resistance such that total resistance measured for combinations of resistance components greatly exceeds the sum of those components measured separately. LWD contributes large proportions of total resistance by creating form drag on individual pieces and by increasing the spill resistance effect of steps. The combined effect of LWD and spill over steps was found to dominate total resistance, whereas grain roughness on step treads was a small component of total resistance. The relative contributions of grain, spill, and woody debris resistance were strongly influenced by discharge and to a lesser extent by LWD density. Grain resistance values based on published formulas and debris resistance values calculated using a cylinder drag approach typically underestimated analogous flume-derived values, further illustrating sources of error in partitioning methods and the importance of accounting for interaction effects between resistance components

    Flight evaluation of two segment approaches for jet transport noise abatement

    Get PDF
    A 75 flight-hour operational evaluation was conducted with a representative four-engine fan-jet transport in a representative airport environment. The flight instrument systems were modified to automatically provide pilots with smooth and continuous pitch steering command information during two-segment approaches. Considering adverse weather, minimum ceiling and flight crew experience criteria, a transition initiation altitude of approximately 800 feet AFL would have broadest acceptance for initiating two-segment approach procedures in scheduled service. The profile defined by the system gave an upper glidepath of approximately 6 1/2 degrees. This was 1/2 degree greater than inserted into the area navigation system. The glidepath error is apparently due to an erroneous along-track, distance-to-altitude profile

    Reinforcing Additives for Ice Adhesion Reduction Coatings

    Get PDF
    Adhesion of contaminants has been identified as a ubiquitous issue for aeronautic exterior surfaces. In-flight icing is particularly hazardous for all aircraft and can be experienced throughout the year under the appropriate environmental conditions. On larger vehicles, the accretion of ice could result in loss of lift, engine failure, and potentially loss of vehicle and life were it not for active deicing or anti-icing equipment. Smaller vehicles though cannot support the mass and mechanical complexity of active ice mitigating systems and thus must rely upon passive approaches or avoid icing conditions altogether. One approach that may be applicable to all aircraft is the use of coatings. Durability remains an issue and has prevented realization of coatings for leading edge contamination mitigation. In this work, epoxy coatings were generated as a passive approach for ice adhesion mitigation and methods to improve durability were evaluated. Highly cross-linked epoxy systems can be extremely rigid, which could have deleterious consequences regarding application as a leading edge coating. Incorporation of flexible species, such as poly(ethylene glycol) may improve coating toughness.8 Additionally, core-shell rubber (CSR) particles have been utilized to improve fracture toughness of epoxies.9 Both of these more established additives are investigated in this work. An emerging additive that is also evaluated here is holey graphene. This nanomaterial possesses many of the advantageous properties of graphene (excellent mechanical properties, thermal and electrical conductivity, large surface area, etc.) while also exhibiting behaviors associated with flexible, porous materials (i.e., compressibility, increased permeation, etc.). Holey graphene, HG, was synthesized by the oxidation of defect-rich sites on graphene sheets through controlled thermal expo-sure.10 It is envisioned that the porous nature of HG would allow resin penetration through the graphitic plane, resulting in better interfacial interaction and therefore better translation of the nanomaterials properties to the surrounding matrix

    The Effect of Stainless Steel 304 Surface Roughness on Ice Adhesion Shear Strength of Accreted Impact Ice

    Get PDF
    Aircraft in-flight icing is problematic due to the ad-verse effect on vehicle performance. It occurs when supercooled water droplets (SCWD) present in clouds, under the appropriate environmental conditions, col-lide with the aircraft surface resulting in accretion of ice (i.e., impact icing). Impact ice can range from clear/glaze to rime or a combination of the two (i.e., mixed) with the type determined by the air temperature (0 to -20C), liquid water content (LWC, 0.3-0.6 g/cu.m), and droplet size [median volumetric diameter (MVD) of 15-40 m] present during accretion.1 These impact icing events generally occur at temperatures ranging from 0 to -20C. Below -20C, ice crystals dominate the environment and typically do not adhere to the aircraft surface. A main difference between an impact icing occurrence and a slow growth icing (i.e., freezer ice) one is the speed of the icing event. Besides environmental conditions, ice adhesion strength (IAS) to a metallic substrate depends upon surface roughness. It is known that increasing surface roughness and decreasing temperature lead to in-creases in IAS
    • …
    corecore