research

Reinforcing Additives for Ice Adhesion Reduction Coatings

Abstract

Adhesion of contaminants has been identified as a ubiquitous issue for aeronautic exterior surfaces. In-flight icing is particularly hazardous for all aircraft and can be experienced throughout the year under the appropriate environmental conditions. On larger vehicles, the accretion of ice could result in loss of lift, engine failure, and potentially loss of vehicle and life were it not for active deicing or anti-icing equipment. Smaller vehicles though cannot support the mass and mechanical complexity of active ice mitigating systems and thus must rely upon passive approaches or avoid icing conditions altogether. One approach that may be applicable to all aircraft is the use of coatings. Durability remains an issue and has prevented realization of coatings for leading edge contamination mitigation. In this work, epoxy coatings were generated as a passive approach for ice adhesion mitigation and methods to improve durability were evaluated. Highly cross-linked epoxy systems can be extremely rigid, which could have deleterious consequences regarding application as a leading edge coating. Incorporation of flexible species, such as poly(ethylene glycol) may improve coating toughness.8 Additionally, core-shell rubber (CSR) particles have been utilized to improve fracture toughness of epoxies.9 Both of these more established additives are investigated in this work. An emerging additive that is also evaluated here is holey graphene. This nanomaterial possesses many of the advantageous properties of graphene (excellent mechanical properties, thermal and electrical conductivity, large surface area, etc.) while also exhibiting behaviors associated with flexible, porous materials (i.e., compressibility, increased permeation, etc.). Holey graphene, HG, was synthesized by the oxidation of defect-rich sites on graphene sheets through controlled thermal expo-sure.10 It is envisioned that the porous nature of HG would allow resin penetration through the graphitic plane, resulting in better interfacial interaction and therefore better translation of the nanomaterials properties to the surrounding matrix

    Similar works