Thomas M. Jordan
A.R.T. Research Corporation
Los Angeles, California
and Millard L. Wohl
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio

This report outlines the theory used in FASTER-III, a Monte Carlo computer program for the transport of neutrons and gamma rays in complex geometries. The code has the additional capability of calculating the minimum weight layered unit shield configuration which will meet a specified dose rate constraint. It includes the treatment of geometric regions bounded by quadratic and quadric surfaces with multiple radiation sources which have a specified space, angle, and energy dependence. The program calculates, using importance sampling, the resulting number and energy fluxes at specified point, surface, and volume detectors.

Results are presented for sample problems involving primary neutron and both primary and secondary photon transport in a spherical reactor-shield configuration. These results include the optimization of the shield configuration.

Section 1

INIRODUCTION AND SUMMARY

The original FASTER program (ref. 1) contained a number of new techniques which provided the capability of obtaining accurate radiation levels at specified points in complex geometries. Prior use of FASTER indicated a need to broaden the overall. program capabilities, automate the importance sampling, increase the computational efficiency, and revise the users manual. This revised program has been designated FASTER-III to distinguish it from earlier versions.

A specific program capability permitting the calculation of minimum weight layered unit shield configurations for mobile nuclear reactor applications, e.g., nuclear propulsion for aircraft, surface effect vehicles, and spacecraft has recently been developed. The basic Monte Carlo transport method was extended to include a calculation of partial derivatives of the radiation fluxes with respect to specified shield dimensions. These derivatives are then used to define exponential relationships used in the shield optimization procedure. This optional program feature is described more completely in Section 2.

Data preparation is simple, with very little judgment required to set up the importance sampling for most problems. The code also has a unit shield weight optimization capability.

Particularly noteworthy features of FASTERIII are the following:
(1) A calculation of optimal importance sampling parameters based on partial derivatives of the variance (Section 2.3).
(2) The acceptance of data in either fixed or variable field formats including the ANISN-DIF format for neutron cross sections.
(3) The calculation of time-dependent neutron and photon transport (using time moments and/or time intervals) including an optional exponential atmosphere.
(4) The improvement and addition of importance sampling models with the various importance sampling parameters built into the program.

Various program features are described in
Refs. 2 to 6.
The application of the FASTER-III program to a
shield optimization problem is discussed in Section 3. The problem involved a spherical reactor-shield configuration and included primary neutrons and both primary and secondary photons. Conclusions and recommendations are presented in Section 4.

Section 2

ANALYSIS

The techniques used in calculating optimum shield configurations and optimum importance sampling parameters are summarized below. The discussion is given in three parts: dose rate derivatives with respect to shield layer thicknesses, optimization procedures, importance parameter optimization.

2.1 Dose Rate Derivatives

The dose rate at a point detector $\underset{y}{ }$ for a specified reactor shield configuration is written as:

$$
\begin{equation*}
D(y)=\sum_{j=1}^{J} R_{j} \varphi_{j}(y) \tag{I}
\end{equation*}
$$

where J is the total number of energy groups for both neutrons and photons (including secondaries), $\varphi_{j}(y)$ is the particle flux in the j th energy group, and R_{j} is the response function to convert from flux to dose rate. The rate of change of the dose rate with respect to a shield layer thickness is simply

$$
\begin{equation*}
\frac{\partial D(\underline{y})}{\partial t_{l}}=\sum_{j=1}^{J} R_{j} \frac{\partial \varphi_{j}(\underline{y})}{\partial t_{i}} \quad \imath=1,2, ., ., L \tag{2}
\end{equation*}
$$

where L is the total number of shield layers and t_{l} is the thickness of the l th layer. The equation used by the program for determining the flux is written as:

$$
\begin{align*}
& \varphi_{j}(\underline{y})=\frac{1}{N} \sum_{n=1}^{N} \sum_{k} S_{j k n}^{*}\left(\underline{u}_{k n}\right) K_{j}\left(\underline{z}_{k n}, \underline{y}\right) \\
& \tag{3}\\
& \underline{u}_{k n}=\frac{\underline{y}-\underline{z}_{k n}}{\left|\underline{y}-\underline{z}_{k n}\right|}
\end{align*}
$$

where N is the total number of histories tracked via the Monte Carlo method, k is the number of particle collisions, $z_{k n}$ is the position of the kth collision of the nth history, $\mathrm{s}_{\mathrm{3}}^{\mathrm{kn}}\left(\underline{u}_{\mathrm{kn}}\right)$ the number of particles in the jth energy group emerging from $z_{k n}$ in the direction $u_{k n}$ of the detector per unit solid angle, and $K_{j}\left(Z_{k n}, \underline{y}\right)$ represents the material and geometric attenuation kernel for particles in the jth energy group going from $z_{k n}$ to the detector.

The partial derivative of the flux with respect to the 2 th shield layer thickness is simply:
$\frac{\partial \varphi_{j}(\underline{y})}{\partial t_{l}}=\frac{1}{N} \sum_{n=1}^{N} \sum_{k} \frac{\partial}{\partial t_{l}}\left[s_{j k n}^{*}\left(\underline{u}_{k n}\right) \kappa_{j}\left(\underline{z}_{k n}, \underline{y}\right)\right]$
The summations are a minor part of the calculation. Therefore, the notation is simplified by concentrating on the elements in the summation

$$
\begin{equation*}
\frac{\partial \theta_{j \mathrm{kn}}}{\partial t_{l}}=\frac{\partial}{\partial t_{l}}\left[\mathrm{~s}_{j \mathrm{kn}}^{*}\left(\underline{u}_{\mathrm{kn}}\right) \mathrm{K}_{j}\left(\underline{z}_{\mathrm{kn}}, \underline{y}\right)\right] \tag{5}
\end{equation*}
$$

where $\theta_{j \mathrm{kn}}$ represents the contribution to the flux in the jth energy group from the kth collision of the nth history. This equation is rewritten as

$$
\begin{align*}
& \frac{\partial \theta_{j k n}}{\partial t_{l}}=\theta_{j k n} \frac{\partial}{\partial t_{l}} \ln \left[s_{j k n}^{*}\left(u_{k n}\right) K_{j}\left(z_{k n}, y\right)\right] \\
& =\theta_{j k n}\left[\frac{\partial}{\partial t_{l}} \ln S_{j k n}^{*}\left(u_{k n}\right)+\frac{\partial}{\partial t_{l}} \ln K_{j}\left(z_{k n}, y\right)\right] \tag{6}
\end{align*}
$$

The second term in brackets involves the attenuation kernel

where M is the total number of regions traversed from $\underline{z}_{k n}$ to the detector, s_{m} is the path length for the mth region traversed, $\sigma_{j m}$ is the total cross section of this region for particles in the jth energy group, and s is the total distance from $z_{k m}$ to the detector, i.e.,

$$
\begin{equation*}
\mathrm{s}=\sum_{\mathrm{m}=1}^{\mathrm{M}} \mathrm{~s}_{\mathrm{m}} \tag{8}
\end{equation*}
$$

A substitution of this kernel gives:
$\frac{\partial}{\partial t_{l}} \ln K_{j}\left(z_{k n}, \underline{x}\right)=\frac{\partial}{\partial t_{l}}\left[-\sum_{m=1}^{M} s_{m}{ }_{j m}-2 \ln \sum_{m=1}^{M} s_{m}\right]$

$$
\begin{align*}
& =-\sum_{m=1}^{M} \sigma_{j m} \frac{\partial s_{m}}{\partial t_{l}}-\frac{2 \sum_{m=1}^{M} \frac{\partial s_{m}}{\partial t_{l}}}{\sum_{m=1}^{M} s_{m}} \\
& =-\sum_{m=1}^{M}\left(\sigma_{j m}+\frac{2}{s}\right) \frac{\partial s_{m}}{\partial t_{l}} \tag{9}
\end{align*}
$$

The partial derivative of the partial path length s_{m} with respect to the shield layer thickness t_{l} is zero unless the mth region traversed is affected by a change in t_{2}. In particular, if t_{l} is a characteristic dimension of the region, i.e., its thickness, then

$$
\begin{equation*}
\frac{\partial s_{\mathrm{m}}}{\partial \mathrm{t}_{\imath}}=\frac{1}{\boldsymbol{\mu}_{\mathrm{knm}}}, \boldsymbol{\mu}_{\mathrm{knm}}=\underline{u}_{\mathrm{kn}} \cdot \underline{n}_{\mathrm{knm}} \tag{10}
\end{equation*}
$$

where $\boldsymbol{\mu}_{\mathrm{knm}}$ is the cosine of the angle measured from the surface normal $n_{k n m}$, with which the particle crosses the boundary of the region.

In the strict sense, the change of the thickness of one shield region can affect other shield regions. In particular, for a spherically symmetric reactor-shield configuration, an increase in the thickness of a shield region forces a movement of all shield regions having a larger radius. The inclusion of these effects in the above equation unnecessarily complicates the analysis and the calculations. The primary effect of changing a shield region dimension is to change the number of mean free paths which particles have to traverse in reaching the detector. Therefore, in calculating the derivatives, only the effect of the material attenuation is treated.

The derivatives at a specific boundary crossing m^{\prime} then simplify to:

$$
\begin{align*}
& \frac{\partial}{\partial t_{l}} \ln K_{j}\left(z_{k n}, y\right)=-\sum_{m=1}^{M}\left(\sigma_{j m}+\frac{2}{s}\right) \frac{\partial s_{m}}{\partial t_{\imath}} \\
& \quad=-\left(\sigma_{j m^{\prime}}+\frac{2}{s}\right) \frac{1}{\mu_{k n m^{\prime}}}-\left(0+\frac{2}{s}\right) \frac{1}{\mu_{k n n^{\prime}}} \\
& \quad=-\sigma_{j m^{\prime}} / \mu_{\mathrm{knm}^{\prime}} \tag{11}
\end{align*}
$$

where m^{\prime} is the index of a region having t_{2} as a dimension. The partiel derivatives of the particle weight with respect to the shield dimensions the first term in brackets in Eq. (6) - are zero at the point of origin of all primary particles. For subsequent particle collisions, the derivatives are calculated using the relationship between particle weights on subsequent collisions:

$$
\begin{gather*}
S_{j k n}^{*}\left(u_{k n}\right) \\
\frac{\sum_{i} S_{i, k-1, n}^{*}\left(\underline{v}_{k n}\right) k_{i}\left(\underline{z}_{k-1, n}, z_{k n}\right) T_{i j}\left(z_{k n}, v_{k n} \cdot u_{k n}\right)}{p_{k n}^{*}\left(\underline{z}_{k n}\right)} \\
v_{k n}=\frac{\underline{z}_{k n}-\underline{z}_{k-1, n}}{\left|\underline{z}_{k n}-\underline{z}_{k-1, n}\right|} \tag{12}
\end{gather*}
$$

where $S_{i}^{*}, k-1, n\left(v_{k n}\right)$ is the number of particles coming out of the previous collision point in the direction $y_{k n}$, and in the ith energy group, $K_{i}\left(z_{k-1}, n, \bar{z}_{k n}\right)$ is the attenuation kernel between particle collision points, $T_{i j}\left(z k n\right.$, $\left.V_{k n} \cdot u_{k n}\right)$ is the scattering kernel for transfer of particles from group i to group j, and $p_{k n}^{*}\left(\underline{z}_{k n}\right)$ is the probability density function used in selecting the collision point.
$p_{k n}^{*}\left(z_{k n}\right)$
$=q_{k n}^{*}\left(v_{k n}\right) \frac{A(s) a(s) \exp \left[-\int_{0}^{s} a\left(s^{\prime}\right) d s^{\prime}\right]}{\int_{0}^{\infty} A\left(s^{\prime}\right) a\left(s^{\prime}\right) \exp \left[-\int_{0}^{s^{\prime}} a\left(s^{\prime \prime}\right) d s^{\prime \prime}\right] d s^{\prime}}$
where $q_{k n}^{*}\left(v_{k n}\right)$ is a probability density function used to select the particle direction, $s=\mid z_{k n}$ -$z_{k-1, n} \mid$ is the distance of the selected collision point from the previous collision point, $\mathrm{A}(\mathrm{s})$ is an importance factor for each region which changes discontinuously at region boundaries, and $a(s)$ is an effective cross section which changes discontinuously at region boundaries and which may change continuously within a region.

The derivative of the logarithm of $p_{k n}^{*}\left(z_{\mathrm{kn}}\right)$

$$
\begin{align*}
& \text { A straightforward substitution gives } \\
& \qquad \frac{\partial}{\partial t_{l}} \text { in } S_{j k n}^{*}\left(\underline{u}_{k n}\right)=\frac{\partial}{\partial t_{l}} \ln \left[\frac{\left.\sum_{i} s_{i, k-1, n}^{*}\left(\underline{v}_{k n}\right){K_{i}\left(\underline{z}_{k-1, n}, \underline{z}_{k n}\right) T_{i j}\left(\underline{k}_{k n}, \underline{v}_{k n} \cdot \underline{u}_{k n}\right.}_{p_{k n}^{*}\left(\underline{z}_{k n}\right)}\right]}{[}\right] \tag{13}
\end{align*}
$$

After some manipulation, this reduces to

$$
\begin{align*}
& \frac{\partial}{\partial t_{l}} \ln s_{j k n}^{*}\left(u_{k n}\right) \\
& =\frac{1}{s_{j k n}^{*}\left(\underline{u_{k n}}\right)} \sum_{i} v_{i j k n}\left[\frac{\partial}{\partial t_{l}} \ln s_{i, k-1, n}^{*}\left(v_{k n}\right)\right. \\
& \left.\quad+\frac{\partial}{\partial t_{l}} \ln K_{i}\left(z_{k-1, n}, z_{k n}\right)-\frac{\partial}{\partial t_{l}} \ln p_{k n}^{*}\left(z_{k n}\right)\right] \tag{14}
\end{align*}
$$

where
$V_{i j k n}$
$=\frac{S_{i, k-1, n}^{*}\left(\underline{v}_{k n}\right) K_{i}\left(\underline{z}_{k-1}, n, \underline{z}_{k n}\right) T_{i j}\left(\underline{z}_{k n}, \underline{v}_{k n} \cdot \underline{u}_{k n}\right)}{p_{k n}^{*}\left(\underline{z}_{k n}\right)}$
The first term in brackets in Eq. (14) is the same partial derivative for collision $k-1$ as the partial derivative now being calculated for collision k. Therefore, it is known, either identically zero for $k=0$, or as determined from Eq. (14) for $k>0$. The second term in brackets in Eq. (14) is similar to the second term in brackets in Eq. (6) and is therefore determined by Eq. (11). The last term in brackets involves the definition of the probability density function used to select the collision point $Z_{k n}$.

The probability density function for a collision point has the form
involves only those terms which change when a shield dimension changes, i.e.,
$\frac{\partial}{\partial t_{l}} \ln p_{k n}^{*}\left(\underline{z}_{k n}\right)=\frac{\partial}{\partial t_{l}}\left[-\int_{0}^{s} a\left(s^{\prime}\right) \mathrm{d} s^{\prime}\right]$
$-\frac{\partial}{\partial t_{\imath}} \ln \left\{\int_{0}^{\infty} A\left(s^{\prime}\right) a\left(s^{\prime}\right) \exp \left[-\int_{0}^{s^{\prime}} a\left(s^{\prime \prime}\right) d s^{\prime \prime}\right] d s^{\prime}\right\}$
Let ${ }^{s} l$ denote the distance to a boundary involving the l th shield dimension. If the first term on the left side of Eq. (17) is affected by a change in this shield dimension, i.e. if $s>s_{l}$, then
$\frac{\partial}{\partial t_{\eta}}\left[-\int_{0}^{s} a\left(s^{\prime}\right) d s^{\prime}\right]=-a\left(s_{\eta}\right) \frac{\partial s_{\eta}}{\partial t_{\eta}}$

$$
\begin{equation*}
=-a\left(s_{\eta}\right) \frac{1}{\mu_{\imath k n}} \tag{18}
\end{equation*}
$$

where $a\left(s_{q}\right)$ is the effective cross section at the boundary of the shield and $\mu_{l k n}$ is the cosine the particle path makes with the outer shield normal. If there is any crossing involving the lth shield dimension, the second term in Eq. (18) will always have a non-zero derivative, i.e.,
$\frac{\partial}{\partial t_{2}} \ln \left\{\int_{0}^{\infty} A\left(s^{\prime}\right) a\left(s^{\prime}\right) \exp \left[-\int_{0}^{s^{\prime}} a\left(s^{\prime \prime}\right) d s^{\prime \prime} d s^{\prime}\right]\right\}$

$$
\begin{equation*}
=\frac{A\left(s_{\eta}\right) a\left(s_{\eta}\right) \frac{1}{\mu_{2 k n}} \exp \left[-\int_{0}^{s^{2}} a\left(s^{\prime}\right) d s^{\prime}\right]}{\left\{\int_{0}^{\infty} A\left(s^{\prime}\right) a\left(s^{\prime}\right) \exp \left[-\int_{0}^{s^{\prime}} a\left(s^{\prime \prime}\right) d s^{\prime \prime}\right] d s^{\prime}\right\}} \tag{19}
\end{equation*}
$$

Curved shield surfaces may be crossed more than once along the path between two particle collision points. Therefore, a summation of Eqs. (18) and (19) over every intersection involving the ith shield dimension is required to completely evaluate Eq. (17).

2.2 Optimization Procedures

The shield optimization calculation yields the set of shield layer thicknesses $t^{\prime}=\left(t_{1}^{\prime}, t_{2}^{\prime}, \ldots\right.$, $\left.t_{j}^{\prime}, \ldots t_{L}^{i}\right)$ such that the dose rate, $D\left(\underline{t}^{+}\right)$, meets the dose constraint. The Monte Carlo calculation is performed for an initial set of shield layer thicknesses $t=\left(t_{1}, t_{2}, \ldots t_{l}, \ldots, t_{L}\right)$ and yields a set of fluxes, $\varphi_{j}(\underline{t}), j=1,{ }^{2}, \ldots, J$ and derivatives, $\partial \varphi_{j}(t) / \partial t_{l}, j=1,2, \ldots, J ; i=1, ?, \ldots$, L. The assumption is made that the fluxes vary exponentially with respect to shield dimension changes in the form

$$
\begin{equation*}
\varphi_{j}\left(\underline{t}^{\prime}\right)=\varphi_{j}(\underline{t}) \exp \left[\underline{a}_{j} \cdot\left(\underline{t}^{\prime}-\underline{t}\right)\right] \tag{20}
\end{equation*}
$$

where $a_{j}=\left(a_{j 1}, a_{j 2}, \ldots, a_{j L}\right)$. It follows that

$$
\begin{align*}
\frac{\partial \varphi_{j}(\underline{t})}{\partial t_{i}}=\varphi_{j}(\underline{t}) \exp \left[\underline{a}_{j} \cdot\left(\underline{t}^{\prime}-\underline{t}\right)\right] & \frac{\partial}{\partial t_{l}}\left[\underline{a}_{j} \cdot\left(\underline{t}^{\prime}-\underline{t}\right)\right] \\
& =\varphi_{j}\left(\underline{t}^{\prime}\right) a_{j l} \quad(21) \tag{21}
\end{align*}
$$

In particular

$$
\begin{equation*}
\frac{\partial \varphi_{j}(\underline{t})}{\partial t_{l}}=a_{j l \varphi_{j}}(\underline{t}) \tag{22}
\end{equation*}
$$

or

$$
\begin{equation*}
a_{j l}=\frac{\partial \varphi_{j}(\underline{t})}{\partial t_{l}} / \varphi_{j}(\underline{t}) \tag{23}
\end{equation*}
$$

The weight is also expressed as a function of the shield layer thicknesses. The weight is denoted by $W\left(t^{\prime}\right)$ and for spherically symmetric shields:

$$
\begin{align*}
& W\left(t^{\prime}\right)=\frac{4 \pi}{3}\left\{\rho_{1}\left[\left(r_{0}+t_{1}^{\prime}\right)^{3}-r_{0}^{3}\right]\right. \\
& \left.+\rho_{2}\left[\left(r_{0}+t_{1}^{\prime}+t_{2}^{\prime}\right)^{3}-\left(r_{0}+t_{1}^{\prime}\right)^{3}\right]+\cdots\right\} \\
& \quad=\frac{4 \pi}{3} \sum_{l=1}^{L} \rho_{2}\left[\left(r_{0}+\sum_{m=1}^{l} t_{m}^{\prime}\right)^{3}-\left(r_{0}+\sum_{m=1}^{2-1} t_{m}^{\prime}\right)^{3}\right] \tag{24}
\end{align*}
$$

where ρ_{l} is the density of the 1 th shield region and r_{O} is the minimum shield radius.

The purpose of the optimization procedure is to minimize the weight $W\left(\underline{t}^{\prime}\right)$ subject to the dose rate constraint $D\left(t^{\prime}\right)=D_{0}$ where D_{0} is a specified dose rate. At this optimum, a small weight perturbation in any layer causes the same dose rate change. The rate at which dose rate changes with respect to a shield weight change in the $2 \underline{\text { th }}$ layer is given by

$$
\begin{equation*}
Q_{l}=\frac{\frac{\partial D\left(t^{\prime}\right)}{\partial t_{i}^{\prime}}}{\frac{\partial W\left(t^{\prime}\right)}{\partial t_{i}^{\prime}}}=\text { constant, } \quad l=1, \quad 2, \ldots, L \tag{25}
\end{equation*}
$$

The necessary derivatives are:

$$
\begin{align*}
\frac{\partial D\left(t^{\prime}\right)}{\partial t_{i}^{\prime}} & =\sum_{j=1}^{J} R_{j} \frac{\partial \varphi_{j}\left(t^{\prime}\right)}{\partial t_{i}^{\prime}}= \\
& =\sum_{j=1}^{J} R_{j^{\prime} a_{j \imath} \varphi_{j}\left(\underline{t}^{\prime}\right) \exp \left[\underline{a}_{j} \cdot\left(\underline{t}^{\prime}-\underline{t}\right)\right]} . \tag{26}
\end{align*}
$$

and for spherically symmetric shield:

$$
\begin{equation*}
\frac{\partial W\left(t^{\prime}\right)}{\partial t_{i}^{\prime}}=4 \pi \sum_{i=2}^{L} \rho_{j}\left[\left(r_{0}+\sum_{m=1}^{i} t_{m}^{\prime}\right)^{2}-\left(r_{0}+\sum_{m=1}^{i-1} t_{m}^{\prime}\right)^{2}\right] \tag{27}
\end{equation*}
$$

In arriving at the optimum shield, the total shield weight is built up in increments of weight $\Delta \mathrm{w}$. Each increment in shield weight is always associated with a particular shield layer thickness. At each iteration, the particular shield dimension is selected by examining the values of the shield weight quality factors, Q_{2}. Each factor Q_{l} represents the approximate change in dose rate per unit change in weight corresponding to a change in the th shield dimension. Negative Q_{2} 's are the most usual and correspond to shields for which an increase in weight - and shield dimensions - gives a decrease in dose rate. Positive Q_{q} 's can occur, however, and correspond to shields for which an increase in weight also increases the dose rate.

If, at a particular iteration, the dose rate is above the dose rate constraint, the minimum shield weight increment would correspond to the least positive value of those Q_{η} 's for which $Q_{i}>0$ and for which $t_{i}>t_{\eta}(\min)$, where $t_{\eta}(\min)$ is the minimum value of the $i t h$ shield layer thickness. If such a ω_{2} exists, the dose rate can be decreased while also decreasing the shield weight the maximum amount. If there isn't such a Q_{7}, the next best procedure is to find the most negative of the Q_{7} 's for which $Q_{2}<0$ and for which $t_{i}<t_{i}(\max)$, where $t_{2}(\max)$ is the maximum value of the l th shield layer thickness. A change in that \bar{Q}_{η} would give the maximum decrease in dose rate per unit increase in weight.

If the dose rate is below the specified dose rate at a particular iteration, the minimum shield weight increment would correspond to the least negative of those Q_{2} 's for which $Q_{2}<0$ and for which $t_{i}^{\prime}>t_{i}(\min)$. If such a Q_{l} exists, the dose rate can be increased while decreasing the shield weight the maximum amount. If there isn't such a Q_{2}, the next best procedure is to find the most positive of those Q_{η} 's for which $Q_{2}>0$ and for which $t_{i}<t_{l}(\max)$. A change in that Q_{l} would give the maximum increase in dose rate per unit increase in weight.

Assuming a particular value Q_{m} of the Q_{η} 's is selected through the above arguments, the corresponding shield dimension t_{m}^{\prime} is changed by a maximum amount Δt_{m} where Δt_{m}^{m} is calculated as

$$
\begin{equation*}
\Delta t_{m}=\frac{\Delta W}{\frac{\partial W\left(t^{\prime}\right)}{\partial t_{m}^{\prime}}} \tag{28}
\end{equation*}
$$

If this change would put t_{m}^{\prime} outside one of its specified limits, the value of t_{m}^{\prime} would be set to that limit, i.e., $t_{m}(\min) \leq t_{m}^{\prime} \leq t_{m}(\max)$. The shield weight increment ΔW is calculated as

$$
\begin{equation*}
\Delta W=\frac{D_{0}-D\left(\underline{t}^{\prime}\right)}{Q_{m}} \tag{29}
\end{equation*}
$$

subject to the constraint that $|\Delta W|<\Delta W_{o}$ where ΔW_{0} is a specified maximum shield weight increment per iteration. Note that ΔW, and therefore Δt_{m}, may be positive or negative depending on the value of Q_{m} and whether the dose rate is above or below the dose rate constraint.

Once a shield layer thickness is changed, the dose, weight, and their derivatives are reevaluated and the entire process is repeated. The optimization would be discontinued in several ways. If the dose rate equals the dose rate constraint within the relative error of the original Monte Carlo dose rate calculation, the program will proceed to the next problem - which may be identical except with more histories to tighten the convergence of Monte Carlo calculations. Similarly, if all shield layer thicknesses have reached their minimum or maximum values, and if the optimum shield cannot be determined with these constraints, the program would again proceed to the next problem. Finally, if the dose rate and dose rate constraint are decades apart in value, the program would reevaluate the fluxes and their derivatives by Monte Carlo every time the dose rate changed by more than a specified factor during the optimization procedure.

2. 3 Importance Parsmeter Optimization

The optimization of the importance sampling must be performed for some function, e.g., dose rate, of the energy-dependent fluxes since there is a different optimum for every initial particle energy. Therefore, assume that a minimum variance calculation of the dose rate is required where

$$
\begin{equation*}
\bar{D}_{\mathrm{N}}=\frac{1}{N} \sum_{\mathrm{n}=1}^{\mathrm{N}} \mathrm{D}_{\mathrm{n}} \tag{30}
\end{equation*}
$$

Where N is the total number of histories and D_{n} is the dose rate from the nth history and \bar{D}_{N} is the average value of the $\overline{\text { dose }}$ rate after N histories. The relative error of this dose rate is given by

$$
\begin{equation*}
E_{N}=\frac{1}{D_{N}}\left[\frac{1}{\mathbb{N}^{2}}\left(\sum_{n=1}^{N} D_{n}^{2}-\widetilde{N D}_{N}^{2}\right)\right] \tag{31}
\end{equation*}
$$

Taking the logarithm of this equation and then performing a formal calculation of the partial derivative with respect to en unspecified parameter a yields
$\frac{\partial}{\partial a} \ln E_{N}=-\frac{\partial}{\partial a} \ln \bar{D}_{N}-\frac{\partial}{\partial a} \ln \mathbb{N}$

$$
\begin{align*}
& +\frac{1 \partial}{2 \partial a} \ln \left(\sum_{n=1}^{N} D_{n}^{2}-N \bar{D}_{N}^{2}\right)=-\frac{\frac{\partial}{\partial a} \bar{D}_{N}}{\bar{D}_{N}} \\
& +\frac{\sum_{n=1}^{N} D_{n} \frac{\partial D_{n}}{\partial a}-\overline{N D}_{N}^{2} \frac{\partial \bar{D}_{N}}{\partial a}}{\sum_{n=1}^{N} D_{n}^{2}-N \bar{D}_{N}^{2}} \\
& =\frac{1}{N^{2} \bar{D}_{N}^{3} E_{N}^{2}}\left[\bar{D}_{N} \sum_{n=1}^{N} D_{n} \frac{\partial D_{n}}{\partial a}-\left(\sum_{n=1}^{N} D_{n}^{2}\right) \frac{\partial \bar{D}_{N}}{\partial a}\right] \tag{32}
\end{align*}
$$

Thus the partial derivative of the relative error with respect to the parameter a is:
$\frac{\partial E_{N}}{\partial a}=\frac{1}{\mathbb{N}^{2} \bar{D}_{N}^{3} E_{N}}\left[\bar{D}_{N} \sum_{n=1}^{N} D_{n} \frac{\partial D_{n}}{\partial a}-\left(\sum_{n=1}^{N} D_{n}^{2}\right) \frac{\partial \bar{D}_{N}}{\partial a}\right]$
The dose rate from the nth history is giver by

$$
\begin{equation*}
D_{n}=\sum_{j=1}^{J} R_{j} \sum_{k} \varphi_{j k n} \tag{34}
\end{equation*}
$$

where J is the total number of energy groups, k is the number of particle collisions, R_{j} is the flux to dose rate conversion factor for the jth energy group, and $\varphi_{j k n}$ is the flux in the j th group from the kth collision of the nth history. Since

$$
\begin{equation*}
\frac{\partial \bar{D}_{N}}{\partial a}=\frac{1}{N} \sum_{i=1}^{n} \frac{\partial D_{n}}{\partial a} \tag{35}
\end{equation*}
$$

the calculations required to evaluate Eq. (33) all involve the summation of terms which involve

$$
\begin{equation*}
\frac{\partial D_{n}}{\partial a}=\frac{\partial}{\partial a} \sum_{j=1}^{J}\left(R_{j} \sum_{k} \varphi_{j k n}\right)=\sum_{j=1}^{J} R_{j} \sum_{k} \frac{\partial \varphi_{j k n}}{\partial a} \tag{36}
\end{equation*}
$$

The remainder of the analysis, therefore, can be concentrated on the partial derivatives of the fluxes. All other operations which must be performed are given above.

The fluxes typically depend on the detector position y, so the equation for the particle flux is written as

$$
\begin{equation*}
\varphi_{j k n}(y)=s_{j k n}^{*}\left(\underline{u}_{k n}\right) K_{j}\left(\underline{z}_{k n}, \underline{y}\right) \tag{37}
\end{equation*}
$$

The transport kernel $K_{j}\left(\underline{z}_{k n}, y\right)$ does not involve any importance sampling parameters so that

$$
\begin{equation*}
\frac{\partial \varphi_{j k n}(\underline{y})}{\partial a}=\frac{\partial s_{j k n}^{*}\left(\underline{u}_{k n}\right) K_{j}\left(\underline{z}_{k n}, \underline{y}\right)}{\partial a} \tag{38}
\end{equation*}
$$

This equation can also be written as
$\frac{\partial \varphi_{j k n}(\underline{y})}{\partial a}=S_{j k n}^{*}\left(\underline{u}_{k n}\right) K_{j}\left(\underline{z}_{k n}, \underline{y}\right) \frac{\partial}{\partial a} \ln S_{j k n}^{*}\left(\underline{u}_{k n}\right)$

Without going into great detail, it turns out that the particle weight $S_{j k n}^{*}\left(u_{k n}\right)$ is composed of a purely analytical numerator, $\bar{v}_{j k n}\left(u_{k n}\right)$ and a denominator which is the product of all the probability density functions used to select the collision points, i.e.,

$$
\begin{equation*}
S_{j k n}^{*}\left(u_{k n}\right)=\frac{v_{j k n}\left(\underline{u}_{k n}\right)}{\prod_{l=0}^{k} p_{l n}^{*}\left(\underline{z}_{l n}\right)} \tag{40}
\end{equation*}
$$

Therefore,
$\ln S_{j k n}^{*}\left(\underline{u}_{\mathrm{kn}}\right)=\ln V_{j \mathrm{kn}}\left(\underline{u}_{\mathrm{kn}}\right)-\ln \prod_{\imath=0}^{k} p_{\imath n}^{*}\left(\underline{z}_{\imath n}\right)$

Since $V_{j k n}\left(\underline{u}_{k n}\right)$ does not explicitly involve any importance parameters, it follows that

$$
\begin{align*}
& \frac{\partial}{\partial a} \ln S_{j k n}^{*}\left(\underline{u}_{k n}\right)=-\frac{\partial}{\partial a} \ln \prod_{l=0}^{k} p_{l n}^{*}\left(\underline{z}_{l n}\right) \\
&=-\sum_{l=0}^{k} \frac{\partial}{\partial a} \ln p_{l n}^{*}\left(\underline{z}_{l n}\right) \tag{42}
\end{align*}
$$

Therefore, Eq. (39) can be re-written as

$$
\begin{equation*}
\frac{\partial \varphi_{j k n}(\underline{y})}{\partial a}=-\varphi_{j k n}(\underline{y}) \sum_{l=0}^{k} \frac{\partial}{\partial a} \ln p_{l n}^{*}\left(\underline{z}_{\imath n}\right) \tag{43}
\end{equation*}
$$

Moreover, the partial derivatives are energyindependent so that Eq. (36) becomes
$\frac{\partial D_{n}}{\partial a}=\sum_{k}\left(\sum_{j=1}^{J} R_{j} \varphi_{j k n}(\underline{y})\right)\left(-\sum_{l=0}^{k} \frac{\partial}{\partial a} \ln p_{l n}^{*}\left(\underline{z}_{l n}\right)\right)(44)$

The evaluation of the partial derivatives of the probability density functions can be written as

$$
\begin{align*}
& \sum_{l=1}^{k} \frac{\partial}{\partial a} \ln p_{l n}^{*}\left(\underline{z}_{l n}\right)=\sum_{l=0}^{k-1} \frac{\partial}{\partial a} \ln p_{l n}^{*}\left(\underline{z}_{l n}\right) \\
&+\frac{\partial}{\partial a} \ln p_{k n}^{*}\left(\underline{z}_{\mathrm{kn}}\right) \tag{45}
\end{align*}
$$

At the kth collision, the first term on the left side of Eq. (45) is known, identically zero if $k=0$. Therefore, the analysis is completed after examining the calculation of the second term.

At this point it is nesessary to identify the particular importance parameter a. Since most of the importance sampling parameters have fairly involved roles, the technique will be applied here
to a set of parameters which can have a reasonably simple role. These parameters consist of the relative importance I_{r} of each region. Normally these parameters are all equal. However, in asymmetric problems, it turns out that some regions are much more important in terms of their scattering contributions to a detector. Therefore, these important regions have a larger value of I_{r}.

The region importance enters into the selection of a collision point through the following probability density function:

$$
\begin{equation*}
\mathrm{p}_{\mathrm{kn}}^{*}\left(\underline{z}_{\mathrm{kn}}\right)=\frac{I_{\mathrm{r}} \mathrm{p}_{\mathrm{r}}^{*}(\mathrm{~s})}{\sum_{\mathrm{h}=1}^{\mathrm{K}} I_{\mathrm{h}} \mathrm{P}_{\mathrm{h}}^{*}} \tag{46}
\end{equation*}
$$

where r is the region in which the collision occurs (selected at random), $p_{r}^{*}(s)$ is the piecewise continuous probaidilty density function in this region at the selected collision point (a distance s from the previous collision point), H is the total number of regions in which the collision could have occurred, and P_{h}^{*} is the integral of $P_{h}^{*}\left(s^{\prime}\right)$ over the partial path length in region h.

Calculating the logarithm of each side of the equation yields:
$\ln p_{k n}^{*}\left(z_{k n}\right)=\ln I_{r}+\ln p_{r}^{*}(s)-\ln \sum_{h=1}^{H} I_{h} P_{h}^{*}$
The partial derivative of Eq. (47) with respect to the specific importance parameter I_{g} the relative importance of region g - yields ${ }^{\text {g }}$

$$
\begin{equation*}
\frac{\partial}{\partial I_{g}} \ln p_{k n}^{*}\left(\underline{z}_{k n}\right)=\frac{1}{I_{r}} \delta_{g r}-\frac{\sum_{h=1}^{H} P_{h}^{*} \delta_{g h}}{\sum_{h=1}^{H} I_{h} P_{h}^{*}} \tag{48}
\end{equation*}
$$

where $\delta_{g h}=0$ if region h is not region g and $\delta_{g g}=1$.

Thus Eq. (48) is evaluated during the random selection of the kth collision point and the final term necessary to evaluate Eq. (45) and all preceding equations has been determined.

The above analysis is used to calculate the partial derivatives of the relative error of the dose rate with respect to the relative importance I_{r} of each geometric region, and a similar analysis is performed for the other importance sampling parameters. The result of the complete Monte Carlo calculation is a set of partial derivatives which, for the region importance, are given by
$\frac{\partial E_{N}}{\partial I_{r}}=\frac{1}{\bar{N}^{2} \bar{D}_{N}^{3} E_{N}}\left[\bar{D}_{N} \sum_{n=1}^{N} D_{n} \frac{\partial D_{n}}{\partial I_{r}}-\left(\sum_{n=1}^{N} D_{n}^{2}\right) \frac{1}{N} \sum_{n=1}^{N} \frac{\partial D_{r_{1}}}{\partial I_{r}}\right]$
where $\partial D_{n} / \partial I_{r}$ is obtained from E_{4}. (44) using Eqs. (45) and (48).

After the calculation is completed, optimal values of the importance sampling parameters are
calculated by requiring that the relative error be zero - not actually achieved of course.

By a first order expansion

$$
\begin{equation*}
E_{N}^{\prime}=0=E_{N}+\sum_{\underline{z}=1}^{R} \frac{\partial E_{N}}{\partial I_{\underline{z}}}\left(I_{\underline{z}}^{\prime}-I_{\underline{z}}\right) \tag{50}
\end{equation*}
$$

where R is the total number of regions. A simple gradient analysis says that $I_{\underline{Z}}^{\prime}-I_{\underline{z}}$ should be proportional to $\partial \mathrm{E}_{\mathrm{N}} / \partial \mathrm{I}_{\underline{z}}$ so that

$$
\begin{equation*}
I_{\underline{z}}^{\prime}=I_{\underline{z}}+C \frac{\partial E_{N}}{\partial I_{\underline{z}}} \tag{51}
\end{equation*}
$$

where, by substitution into Eq. (50),

$$
\mathrm{C}=\frac{-E_{\mathrm{N}}}{\sum_{\underline{z}=1}^{R}\left(\frac{\partial E_{\mathbb{N}}}{\partial I_{\underline{z}}}\right)^{2}} \text { where } \text { space coordinate } \frac{z}{} \text { is a general phase (52) }
$$

The program prints the optimum values of I_{z}^{\prime} and other importance parameters after completing the Monte Carlo flux calculation. This analysis is performed for every response function. After more experience is obtained with the technique, the program could be modified to change these parameters internally corresponding to a specified response function.

Section 3

SAMPLE PROBLEM RESULTS

Two problems were investigated using the shield optimization capabilities of the FASTER-III program. Both problems involved a spherical reactor-shield configuration and included primary neutrons and both primary and secondary photons.

The two problems were similar except for the power level, 375 MN and 600 MW respectively. Both problems used a flat radial distribution for the primary neutron and photon source distribution. The primary photon source included an infinite operation equilibrium fission product term.

The core radii for the two problems were 82.38 and 96.38 cm respectively, corresponding to a power density of $4.53 \mathrm{MW} / \mathrm{ft}^{3}$. Following the core was a 7.62 cm Be reflector; a 5 cm depleted uranium shield; three depleted uranium-borated water shield layers of 57, 15, and 15 cm thickness and 6.4, 4.6 , and $2.8 \mathrm{gm} / \mathrm{cm}^{3}$ density respectively; and a $l 17 \mathrm{~cm}$ borated water shield. This base line shield configuration was based on parameters obtained from SANE-SAGE calculations and subsequent calculations using the UNAMIT program, Ref. 7. The reactorshield compositions are given in Table 1.

The primary neutron transport calculation utilized multigroup cross sections for 26 energy groups. Fifteen energy groups were utilized for both primary and secondary photons. The secondary production cross sections included both inelastic and capture gammas.

These initial configurations were each analyzed for a point detector 30 ft from the core center by following approximately 500 energydependent packets of primary neutrons and photons and approximately 7000 packets of secondary photons. The dose rates obtained from these calcu-
lations are tabulated in Table 2 including a breakdown by secondary source region. Each of these problems required about 28 minutes on the UNIVAC 1108 computer.

The basic calculated dose rates and dose rate derivatives were also used by the FASTER-III program to calculate the minimum weight shield conłiguration which would give a dose rate of $0.25 \mathrm{mr} /$ hr at the specified detector point. The final shield configurations following the optimization are given in Table 3.

In both cases, the optimum shield configuration is significantly different from the base line configuration. Since the base line configuration was not generated by the FASTER-III program it is difficult to discuss many factors entering into that calculation which would account for the different optimal configuration. It is noted, however, that the base line configuration was generated using parameters corresponding to a calculated dose rate an order of magnitude below the specified dose rate constraint, Ref. 8. As such, the base line configuration used in the FASTER-III program was determined from an extrapolation of a different base line configuration.

A more critical critique can be made of the FASTER-III results independently. First it is noted that neither problem saw a significant contribution, less than a few percent, from photon sources in the core region. In fact, the 600 MW reactor dose rate from this source was about a factor of two less than it was for the 375 MN reactor. This difference is ascribed to the problem statistics since core photon sources see approximately 30 mean free paths of shield material. Therefore, it is doubtrul if this dose rate component is converged within a factor of two after only 500 packets but this does not introduce a significant error since the original contribution was only two percent of the total dose rate.

The small contribution from core photon sources decreases the amount of high Z shields required around the core. Therefore, both problems gave a significant change in the first two shield dimensions during the optimization. In the 375 MW problem, the first mixture of depleted uraniumborated water ($a=6.4 \mathrm{~cm} / \mathrm{cm}^{3}$) was eliminated entirely. In the 600 MN problem, the depleted uranium and most of the first mixture were eliminated.

The main difference between the two FASTER-III calculations was the shift in the placement of lighter shield mixes towards the core for the 600 MN problem. An examination of the secondary photon dose components indicates that the contribution from the outer two shields was about 25 percent for the 375 MW reactor and almost 50 percent for the 600 MW reactor. Since these sources depend on the neutron attenuation through the closer regions and since lower effective Z materials are better neutron attenuators on a weight basis, the 600 MW problem tends to replace high effective Z material with a lower effective Z material.

The differences in the contribution from secondary sources in the outer shield regions is greater than expected for the nominal difference in the core region. Therefore, much of the difference in these sources must be ascribed to statistical variations. In fact, both problems had approximately 25 to 30 percent calculated relative error in the total photon dose rate. It should be noted that the FASTER-III program includes a number of importance sampling techniques which could be used to decrease this error. However, both
problems were run using the built-in definitions of importance parameters. Alternatively, more histories could have been used although the computer time requirements would have become excessive.

Section 4

CONCLUSIONS AND RECOMMENDATIONS
The FASTER-III program was developed to calculate neutron and photon fluxes at specified points in complex geometries. Alternatively, it can also calculate fluxes averaged over specified surfaces and volumes. The program was designed such that data preparation is simple and so that very little judgment is required to set up the importance sampling for most problems. The FASTER-III program satisfies these requirements very well.

The shield weight optimization capability included in the FASTER-III program permits the calculation of both base line radiation levels and optimal shield thicknesses all in a single computer run. However, the very large attenuation factors involved in the domonstration problems yielded some questionable results. In particular, the statisti-
cal differences in the relative contribution from various secondary source regions caused corresponding variations in the relative distributions of shield materials. Of course the statistical variations would be less in problems with less overall attenuation.

The effect of statistical differences on the shield optimization can be reduced by following more packets. However, the computer times start to get excessive if this is the only approach used. It would be more fruitful in terms of the routine application of the program to expend some effort towards altering the importance sampling.

The FASTER-III program has the capability of calculating optimal importance parameters based on partial derivatives of the variance. This feature can be used in determining better importance sampling parameters for shield optimization problems. In fact, the overall program efficiency could be improved if this feature was utilized on a wide variety of problems with the results being used to improve the built-in importance sampling models and parameters.

REFERENCES

1. Jorden, T. M.: FASTER, A Fortran Analytical Solution to the Transport Equation by Random Sampling. Vol. 9 of Synthesis of Calculational Methods for the Design and Analysis of Radiation Shields for Nuclear Rocket Systems. Rep. WANL-PR-(IL)-010, Westinghouse Astronuclear Lab., June 1967.
2. Jordan, T. M.: BETA, A Monte Carlo Computer Program for Bremsstrahlung and Electron Transport Analysis. A.R.T. Research Corp. (AFWL-TR-68-111, DDC No. AD-844258), Oct. 14, 1968.
3. Jordan, T. M. : Non-Negative Multigroup Cross Sections for FASTER. Rep. ART-19, A.R.T. Research Corp., Sept. 1968.
4. Jordan, Thomas M.; and Wohl, Millard L.: Helical Duct Geometry Routine for the Shielding Computer Program "FASTER." NASA TM X-1838, 1969.
5. Jordan, T. M.: Advanced Monte Carlo Concepts - Methods and Applications. Trans. Am. Nucl. Soc., vol. 12, no. 2, 1969, p. 945.
6. Jordan, T. M.: FASTER, A Generalized-Geometry Monte Carlo Computer Program for the Transport of Neutrons and Gamma Rays (Rev. Version). Vol. I - Summary Report. Rep. ART-42, A.R.T. Research Corp., June 1970.
7. Troubetzkoy, Eugene S.; and Wohl, Millard L.: UNAMIT-A One-Dimensional 4π Spherical Multilayer Reactor-Shield-Weight Optimization Code. NASA TM X-2048, 1970.
8. Wohl, M. L.: Private Communication, Dec. 3, 1970.

SPhrrical reactor-Shield compiouration

Element	COMPOSITIOMS (10^{24} atoms/cm ${ }^{3}$)						
	CORE	Raplector	$\begin{aligned} & \mathrm{v}^{238} \\ & \text { SHIBLD } \end{aligned}$	$\operatorname{MHX}_{\text {SHIELD }} 1$	$\operatorname{mIx}_{\text {SHIELD }}^{2}$	$\operatorname{mIX}_{\mathrm{SHIELD}} 3$	$\begin{aligned} & \mathrm{H}, 0+\mathrm{B} \\ & \text { Shraid } \end{aligned}$
H	0.01976	0.0	0.0	0.0451	0.0516	0.0580	0.0645
Ba^{9}	0.0	0.120	0.0	0.0	0.0	$\bigcirc 0$	0.0337
B	0.0	0.0	0.0	0.000671	0.000766	0.000862	0.000958
0	0.01184	0.0	0.0	0.0226	0.0258	0.0290	0.0
A1	0.0512	0.0	0.0	0.0	0.0	0.0	0.0
2 r	0.01744	0.0	0.0	0.0	0.0	0.0	0.0
v^{235}	0.000979	0.0	0.0	0.0	0.0	0.0	0.0
0^{238}	0.000078	0.0	0.0482	0.01446	0.00964	0.00482	0.0

table 2

DOSE RATE COMPONENT	dose rate contridurions at 30 fret FROM CORE CENTER	
	375 MW REACTOR ($m r / h r$)	600 MW REACTOR ($m \mathrm{r} / \mathrm{hr}$)
Photon Source Region		
Core	0.009	0.004
Reflector	3.5×10^{-6}	6.3×10^{-6}
Depleted Uranium	3.2×10^{-5}	1.3×10^{-5}
M1x L Shield	0.018	0.026
Mix 2 Shield	0.062	0.075
Mix 3 Shiteld	0.017	0.063
Borated Mater Shield	0.011	0.022
Total Photons	0.120 ± 0.034	0.187 ± 0.054
Neutrons	0.020 ± 0.002	0.027 ± 0.003
Total	0.140	0.214

resuins of fastri-lit shield optdatzation ($0.25 \mathrm{mr} / \mathrm{hr}$ at 30 reet)

Quantity	375 MN REACTOR			
	Initial	Final	Intitial	Final
Dose Rate (mr/hr)				
Photon	0. 120	0.126	0.187	0.153
Neutron	0.020	0.124	0.027	0.097
Total	0.140	0.250	0.214	0.250
Shield Weight ($10^{3} \mathrm{~kg}$)				
Depleted U	10.2	12.6	13.8	0.0
Mix 1	71.2	0.0	89.2	6.6
M1x 2	22.1	52.4	26.4	52.4
Mix 3	16.1	12.2	19.0	63.1
Water	86.7	80.3	97.7	85.3
Total	206.3	157.5	246.1	207.4
Shield Thickness (cm)				
Depleted U	5.0	6.1	5.0	0.0
Mix 1	57.0	0.0	57.0	7.0
Mix 2	15.0	57.3	15.0	48.4
Mix 3	15.0	13.5	15.0	51.4
Weter	117.0	120.8	117.0	98.4

