826 research outputs found

    Sensitivity study of forecasted aftershock seismicity based on Coulomb stress calculation and rate- and state-dependent frictional response

    Get PDF
    We use the Dieterich (1994) physics-based approach to simulate the spatio- temporal evolution of seismicity caused by stress changes applied to an infinite population of nucleating patches modeled through a rate- and state- dependent friction law. According to this model, seismicity rate changes depend on the amplitude of stress perturbation, the physical constitutive properties of faults (represented by the parameter Aσ), the stressing rate and the background seismicity rate of the study area. In order to apply this model in a predictive manner, we need to understand the impact of physical model parameters and the correlations between them. Firstly we discuss different definitions of the reference seismicity rate and show their impact on the computed rate of earthquake production for the 1992 Landers earthquake sequence as a case study. Furthermore, we demonstrate that all model parameters are strongly correlated for physical and statistical reasons. We discuss this correlation emphasizing that the estimations of the background seismicity rate, stressing rate and Aσ are strongly correlated to reproduce the observed aftershock productivity. Our analytically derived relation demonstrates the impact of these model parameters on the Omori-like aftershock decay: the c- value and the productivity of the Omori law, implying a p-value smaller or equal to 1. Finally, we discuss an optimal strategy to constrain model parameters for near-real time forecasts

    Hot-carrier photocurrent effects at graphene-metal interfaces

    Get PDF
    Photoexcitation of graphene leads to an interesting sequence of phenomena, some of which can be exploited in optoelectronic devices based on graphene. In particular, the efficient and ultrafast generation of an electron distribution with an elevated electron temperature and the concomitant generation of a photo-thermoelectric voltage at symmetry-breaking interfaces is of interest for photosensing and light harvesting. Here, we experimentally study the generated photocurrent at the graphene-metal interface, focusing on the time-resolved photocurrent, the effects of photon energy, Fermi energy and light polarization. We show that a single framework based on photo-thermoelectric photocurrent generation explains all experimental results

    Is it cheating or learning the craft of writing? Using Turnitin to help students avoid plagiarism

    Get PDF
    Plagiarism is a growing problem for universities, many of which are turning to software detection for help in detecting and dealing with it. This paper explores issues around plagiarism and reports on a study of the use of Turnitin in a new university. The purpose of the study was to inform the senior management team about the plagiarism policy and the use of Turnitin. The study found that staff and students largely understood the university’s policy and Turnitin’s place within it, and were very supportive of the use of Turnitin in originality checking. Students who had not used Turnitin were generally keen to do so. The recommendation to the senior management team, which was implemented, was that the use of Turnitin for originality checking should be made compulsory where possible - at the time of the study the use of Turnitin was at the discretion of programme directors. A further aim of the study was to contribute to the sector’s body of knowledge. Prevention of plagiarism through education is a theme identified by Badge and Scott (2009) who conclude an area lacking in research is "investigation of the impact of these tools on staff teaching practices". Although a number of recent studies have considered educational use of Turnitin they focus on individual programmes or subject areas rather than institutions as a whole and the relationship with policy

    Generation of photovoltage in graphene on a femtosecond time scale through efficient carrier heating

    Get PDF
    Graphene is a promising material for ultrafast and broadband photodetection. Earlier studies addressed the general operation of graphene-based photo-thermoelectric devices, and the switching speed, which is limited by the charge carrier cooling time, on the order of picoseconds. However, the generation of the photovoltage could occur at a much faster time scale, as it is associated with the carrier heating time. Here, we measure the photovoltage generation time and find it to be faster than 50 femtoseconds. As a proof-of-principle application of this ultrafast photodetector, we use graphene to directly measure, electrically, the pulse duration of a sub-50 femtosecond laser pulse. The observation that carrier heating is ultrafast suggests that energy from absorbed photons can be efficiently transferred to carrier heat. To study this, we examine the spectral response and find a constant spectral responsivity between 500 and 1500 nm. This is consistent with efficient electron heating. These results are promising for ultrafast femtosecond and broadband photodetector applications.Comment: 6 pages, 4 figure

    Aftershock Sequences Modeled with 3-D Stress Heterogeneity and Rate-State Seismicity Equations: Implications for Crustal Stress Estimation

    Get PDF
    In this paper, we present a model for studying aftershock sequences that integrates Coulomb static stress change analysis, seismicity equations based on rate-state friction nucleation of earthquakes, slip of geometrically complex faults, and fractal-like, spatially heterogeneous models of crustal stress. In addition to modeling instantaneous aftershock seismicity rate patterns with initial clustering on the Coulomb stress increase areas and an approximately 1/t diffusion back to the pre-mainshock background seismicity, the simulations capture previously unmodeled effects. These include production of a significant number of aftershocks in the traditional Coulomb stress shadow zones and temporal changes in aftershock focal mechanism statistics. The occurrence of aftershock stress shadow zones arises from two sources. The first source is spatially heterogeneous initial crustal stress, and the second is slip on geometrically rough faults, which produces localized positive Coulomb stress changes within the traditional stress shadow zones. Temporal changes in simulated aftershock focal mechanisms result in inferred stress rotations that greatly exceed the true stress rotations due to the main shock, even for a moderately strong crust (mean stress 50 MPa) when stress is spatially heterogeneous. This arises from biased sampling of the crustal stress by the synthetic aftershocks due to the non-linear dependence of seismicity rates on stress changes. The model indicates that one cannot use focal mechanism inversion rotations to conclusively demonstrate low crustal strength (≤10 MPa); therefore, studies of crustal strength following a stress perturbation may significantly underestimate the mean crustal stress state for regions with spatially heterogeneous stress

    Cardiac safety of indacaterol in healthy subjects: a randomized, multidose, placebo- and positive-controlled, parallel-group thorough QT study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Indacaterol is a novel once-daily ultra long-acting β<sub>2</sub>-agonist for the treatment of chronic obstructive pulmonary disease. It is known that β<sub>2</sub>-agonists, like other adrenergic compounds, can prolong the QT-interval. This thorough QT/QTc study (as per ICH E14 guideline) evaluated the effect of indacaterol on the QT interval in healthy subjects.</p> <p>Methods</p> <p>In this randomized, double-blind, parallel-group, placebo- and positive-controlled (open-label moxifloxacin) study, non-smoking healthy subjects (18-55 years, body mass index: 18.5-32.0 kg/m<sup>2</sup>) were randomized (4:4:2:4:1) to 14-day treatment with once-daily indacaterol (150 μg, 300 μg, or 600 μg), placebo, or placebo/moxifloxacin (double-blind 14-day treatment with placebo and a single open-label dose of 400 mg moxifloxacin on Day 14). The primary endpoint was the change from baseline on Day 14 in QTcF (QT interval corrected for heart rate using Fridericia's formula).</p> <p>Results</p> <p>In total, 404 subjects were randomized to receive indacaterol (150 [n = 108], 300 [n = 108], 600 μg [n = 54]), placebo (n = 107), or placebo/moxifloxacin (n = 27); 388 subjects completed the study. Maximal time-matched mean (90% confidence intervals) treatment differences from placebo in QTcF change from baseline on Day 14 were 2.66 (0.55, 4.77), 2.98 (1.02, 4.93) and 3.34 (0.86, 5.82) ms for indacaterol 150 μg, 300 μg and 600 μg, respectively. Study sensitivity was confirmed with moxifloxacin demonstrating a significant maximal time-matched QTcF prolongation of 13.90 (10.58, 17.22) ms compared to placebo. All indacaterol doses were well tolerated.</p> <p>Conclusion</p> <p>Indacaterol, at doses up to 600 μg once daily (2-4 times the therapeutic dose) does not have any clinically relevant effect on the QT interval.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01263808">NCT01263808</a></p
    corecore