113 research outputs found

    Transport of Antimony Processing Wastes in the Prospect Creek Drainage, Western Montana

    Get PDF
    We investigated the hydrogeologic behavior of the United States Antimony Corporation\u27s 1O-acre waste impoundment. We found that waste fluids from the impoundment contribute measurable concentrations of antimony, sulfate, and sodium to the underlying ground water system. The concentrations and transport of these contaminants are strongly influenced by large fluctuations in the water table beneath the disposal impoundments. Water table fluctuations are, in turn, driven by seasonally variable ground water recharge from Prospect Creek. Prospect Creek carries a measurable dissolved antimony load attributable to the impoundment site. We found this flux to be maximized under high spring streamflow conditions. Under the conditions studied, the discharged antimony is unlikely to significantly degrade the mainstem Clark Fork River. However, we have estimated the impounded wastes contain up to 100,000 pounds of water- soluble antimony, and under the existing hydrologic conditions they will continue to provide the alluvial ground water system and Prospect Creek with a low-grade source of this metal

    Plasmon losses due to electron-phonon scattering: the case of graphene encapsulated in hexagonal Boron Nitride

    Full text link
    Graphene sheets encapsulated between hexagonal Boron Nitride (hBN) slabs display superb electronic properties due to very limited scattering from extrinsic disorder sources such as Coulomb impurities and corrugations. Such samples are therefore expected to be ideal platforms for highly-tunable low-loss plasmonics in a wide spectral range. In this Article we present a theory of collective electron density oscillations in a graphene sheet encapsulated between two hBN semi-infinite slabs (hBN/G/hBN). Graphene plasmons hybridize with hBN optical phonons forming hybrid plasmon-phonon (HPP) modes. We focus on scattering of these modes against graphene's acoustic phonons and hBN optical phonons, two sources of scattering that are expected to play a key role in hBN/G/hBN stacks. We find that at room temperature the scattering against graphene's acoustic phonons is the dominant limiting factor for hBN/G/hBN stacks, yielding theoretical inverse damping ratios of hybrid plasmon-phonon modes of the order of 5050-6060, with a weak dependence on carrier density and a strong dependence on illumination frequency. We confirm that the plasmon lifetime is not directly correlated with the mobility: in fact, it can be anti-correlated.Comment: 14 pages, 4 figure

    Highly confined low-loss plasmons in graphene-boron nitride heterostructures

    Get PDF
    Graphene plasmons were predicted to possess ultra-strong field confinement and very low damping at the same time, enabling new classes of devices for deep subwavelength metamaterials, single-photon nonlinearities, extraordinarily strong light-matter interactions and nano-optoelectronic switches. While all of these great prospects require low damping, thus far strong plasmon damping was observed, with both impurity scattering and many-body effects in graphene proposed as possible explanations. With the advent of van der Waals heterostructures, new methods have been developed to integrate graphene with other atomically flat materials. In this letter we exploit near-field microscopy to image propagating plasmons in high quality graphene encapsulated between two films of hexagonal boron nitride (h-BN). We determine dispersion and particularly plasmon damping in real space. We find unprecedented low plasmon damping combined with strong field confinement, and identify the main damping channels as intrinsic thermal phonons in the graphene and dielectric losses in the h-BN. The observation and in-depth understanding of low plasmon damping is the key for the development of graphene nano-photonic and nano-optoelectronic devices

    Tuning quantum non-local effects in graphene plasmonics

    Full text link
    The response of an electron system to electromagnetic fields with sharp spatial variations is strongly dependent on quantum electronic properties, even in ambient conditions, but difficult to access experimentally. We use propagating graphene plasmons, together with an engineered dielectric-metallic environment, to probe the graphene electron liquid and unveil its detailed electronic response at short wavelengths.The near-field imaging experiments reveal a parameter-free match with the full theoretical quantum description of the massless Dirac electron gas, in which we identify three types of quantum effects as keys to understanding the experimental response of graphene to short-ranged terahertz electric fields. The first type is of single-particle nature and is related to shape deformations of the Fermi surface during a plasmon oscillations. The second and third types are a many-body effect controlled by the inertia and compressibility of the interacting electron liquid in graphene. We demonstrate how, in principle, our experimental approach can determine the full spatiotemporal response of an electron system.Comment: 8 pages, 4 figure

    Electrical detection of hyperbolic phonon-polaritons in heterostructures of graphene and boron nitride

    Full text link
    Light properties in the mid-infrared can be controlled at a deep subwavelength scale using hyperbolic phonons-polaritons (HPPs) of hexagonal boron nitride (h-BN). While propagating as waveguided modes HPPs can concentrate the electric field in a chosen nano-volume. Such a behavior is at the heart of many applications including subdiffraction imaging and sensing. Here, we employ HPPs in heterostructures of h-BN and graphene as new nano-optoelectronic platform by uniting the benefits of efficient hot-carrier photoconversion in graphene and the hyperbolic nature of h-BN. We demonstrate electrical detection of HPPs by guiding them towards a graphene pn-junction. We shine a laser beam onto a gap in metal gates underneath the heterostructure, where the light is converted into HPPs. The HPPs then propagate as confined rays heating up the graphene leading to a strong photocurrent. This concept is exploited to boost the external responsivity of mid-infrared photodetectors, overcoming the limitation of graphene pn-junction detectors due to their small active area and weak absorption. Moreover this type of detector exhibits tunable frequency selectivity due to the HPPs, which combined with its high responsivity paves the way for efficient high-resolution mid-infrared imaging

    Investigations Into Whole Water, Prototropic and Amide Proton Exchange in Lanthanide(III) DOTA-Tetraamide Chelates

    Get PDF
    Lanthanide(III) chelates of DOTA-tetraamide ligands have been an area of particular interest since the discovery that water exchange kinetics are dramatically affected by the switch from acetate to amide side-chain donors. More recently these chelates have attracted interest as potential PARACEST agents for use in MRI. In this paper we report the results of studies using chemical exchange saturation transfer (CEST) and some more recently reported chelates to re-examine the exchange processes in this class of chelate. We find that the conclusions of Parker and Aime are, for the most part, solid; water exchange is slow and a substantial amount of prototropic exchange occurs in aqueous solution. The extent of prototropic exchange increases as the pH increases above 8, leading to higher relaxivities at high pH. However, amide protons are found to contribute only a small amount to the relaxivity at high pH

    Near-field photocurrent nanoscopy on bare and encapsulated graphene

    Get PDF
    Opto-electronic devices utilizing graphene have already demonstrated unique capabilities, which are much more difficult to realize with conventional technologies. However, the requirements in terms of material quality and uniformity are very demanding. A major roadblock towards high-performance devices are the nanoscale variations of graphene properties, which strongly impact the macroscopic device behaviour. Here, we present and apply opto-electronic nanoscopy to measure locally both the optical and electronic properties of graphene devices. This is achieved by combining scanning near-field infrared nanoscopy with electrical device read-out, allowing infrared photocurrent mapping at length scales of tens of nanometers. We apply this technique to study the impact of edges and grain boundaries on spatial carrier density profiles and local thermoelectric properties. Moreover, we show that the technique can also be applied to encapsulated graphene/hexagonal boron nitride (h-BN) devices, where we observe strong charge build-up near the edges, and also address a device solution to this problem. The technique enables nanoscale characterization for a broad range of common graphene devices without the need of special device architectures or invasive graphene treatment

    Thermoelectric detection and imaging of 1 propagating graphene plasmons

    Get PDF
    Controlling, detecting and generating propagating plasmons by all-electrical means is at the heart of on-chip nano-optical processing1, 2, 3. Graphene carries long-lived plasmons that are extremely confined and controllable by electrostatic fields4, 5, 6, 7; however, electrical detection of propagating plasmons in graphene has not yet been realized. Here, we present an all-graphene mid-infrared plasmon detector operating at room temperature, where a single graphene sheet serves simultaneously as the plasmonic medium and detector. Rather than achieving detection via added optoelectronic materials, as is typically done in other plasmonic systems8, 9, 10, 11, 12, 13, 14, 15, our device converts the natural decay product of the plasmon—electronic heat—directly into a voltage through the thermoelectric effect16, 17. We employ two local gates to fully tune the thermoelectric and plasmonic behaviour of the graphene. High-resolution real-space photocurrent maps are used to investigate the plasmon propagation and interference, decay, thermal diffusion, and thermoelectric generation.Peer ReviewedPostprint (author's final draft
    • …
    corecore