44 research outputs found
Endocytosis of therapeutic macromolecules in tumor cells - Mechanistic aspects of the proteoglycan receptor function
Novel therapeutics to combat cancer are urgently needed. Most current pharmacological therapies have severe side effects and are seldom curative. Macromolecular drugs, and in particular nucleic acid based drugs, offer a potential remedy for this situation. Currently, the absence of efficacious and safe methods to deliver nucleic acids to intracellular sites of action is the main impediment to the introduction of nucleic acid based therapies in the clinic. Viral delivery methods have been demonstrated to efficiently deliver nucleic acids, but also to be associated with severe, occasionally life threatening, immune reactions. Non-viral delivery methods are, so far, not sufficiently efficient for use in the clinic. Many viral and virtually all non-viral macromolecular delivery methods depend on cell surface heparan sulfate proteoglycans (HS PGs) for efficient uptake, however the details of this mechanism and the exact role of the PG has been unclear. The aim of this thesis was to clarify the role of the cell surface PG in macromolecular uptake processes. It is demonstrated that mammalian cells can internalize extracellular DNA by a pathway strictly dependent on cell surface PGs and this pathway is characterized. Secreted, positively charged, proteins and peptides including the antimicrobial peptide LL-37, are shown to facilitate the uptake process. It is also demonstrated that specific HS epitopes, present on cell surface HS PGs, are pivotal for the uptake of diverse HS binding ligands including polyamines and macromolecular antibody complexes. Finally, using a newly developed method for the isolation of endocytic vesicles, it is demonstrated that both classes of cell surface HS PGs, syndecans and glypicans, are true internalizing receptors capable of intracellular macromolecular delivery. This thesis advances our understanding of PGs as potential targets for macromolecular delivery vehicles. This understanding will be of aid for the development of future macromolecular drugs to the benefit of the patient
Nanotubes, exosomes, and nucleic acid–binding peptides provide novel mechanisms of intercellular communication in eukaryotic cells: implications in health and disease
The prevailing view that eukaryotic cells are restrained from intercellular exchange of genetic information has been challenged by recent reports on nanotubes, exosomes, apoptotic bodies, and nucleic acid–binding peptides that provide novel pathways for cell–cell communication, with implications in health and disease
External post-tensioning of cfrp tendons using integrated sleeve-wedge anchorage
Strengthening of structures using external post-tension CFRP systems have proven to be anefficient method as such system increases the structural capacity and reduces cracks and deflection. Sufficient anchorage is of significant importance since the anchorage provides the connection between the post-tensioning system and the remaining structure. A special designed integrated sleeve-wedge anchorage has therefore been designed to improve thereliability of the mounting procedure, reduce the possible modes of failure and thus provide desired anchorage. The present research shows that adequate anchorage was obtained using the novel anchorage and that its behaviour is stable and predicatble when short term static load is applied. Desired strengthening was also observed in external post-tensioning on reinforced concrete T-beams. The requirements and definitions on a stable anchorage of CFRP tendons however still need to be investigated further
Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
Background: Detailed, comprehensive, and timely reporting on population health by underlying causes of disability and premature death is crucial to understanding and responding to complex patterns of disease and injury burden over time and across age groups, sexes, and locations. The availability of disease burden estimates can promote evidence-based interventions that enable public health researchers, policy makers, and other professionals to implement strategies that can mitigate diseases. It can also facilitate more rigorous monitoring of progress towards national and international health targets, such as the Sustainable Development Goals. For three decades, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) has filled that need. A global network of collaborators contributed to the production of GBD 2021 by providing, reviewing, and analysing all available data. GBD estimates are updated routinely with additional data and refined analytical methods. GBD 2021 presents, for the first time, estimates of health loss due to the COVID-19 pandemic. Methods: The GBD 2021 disease and injury burden analysis estimated years lived with disability (YLDs), years of life lost (YLLs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries using 100 983 data sources. Data were extracted from vital registration systems, verbal autopsies, censuses, household surveys, disease-specific registries, health service contact data, and other sources. YLDs were calculated by multiplying cause-age-sex-location-year-specific prevalence of sequelae by their respective disability weights, for each disease and injury. YLLs were calculated by multiplying cause-age-sex-location-year-specific deaths by the standard life expectancy at the age that death occurred. DALYs were calculated by summing YLDs and YLLs. HALE estimates were produced using YLDs per capita and age-specific mortality rates by location, age, sex, year, and cause. 95% uncertainty intervals (UIs) were generated for all final estimates as the 2·5th and 97·5th percentiles values of 500 draws. Uncertainty was propagated at each step of the estimation process. Counts and age-standardised rates were calculated globally, for seven super-regions, 21 regions, 204 countries and territories (including 21 countries with subnational locations), and 811 subnational locations, from 1990 to 2021. Here we report data for 2010 to 2021 to highlight trends in disease burden over the past decade and through the first 2 years of the COVID-19 pandemic. Findings: Global DALYs increased from 2·63 billion (95% UI 2·44–2·85) in 2010 to 2·88 billion (2·64–3·15) in 2021 for all causes combined. Much of this increase in the number of DALYs was due to population growth and ageing, as indicated by a decrease in global age-standardised all-cause DALY rates of 14·2% (95% UI 10·7–17·3) between 2010 and 2019. Notably, however, this decrease in rates reversed during the first 2 years of the COVID-19 pandemic, with increases in global age-standardised all-cause DALY rates since 2019 of 4·1% (1·8–6·3) in 2020 and 7·2% (4·7–10·0) in 2021. In 2021, COVID-19 was the leading cause of DALYs globally (212·0 million [198·0–234·5] DALYs), followed by ischaemic heart disease (188·3 million [176·7–198·3]), neonatal disorders (186·3 million [162·3–214·9]), and stroke (160·4 million [148·0–171·7]). However, notable health gains were seen among other leading communicable, maternal, neonatal, and nutritional (CMNN) diseases. Globally between 2010 and 2021, the age-standardised DALY rates for HIV/AIDS decreased by 47·8% (43·3–51·7) and for diarrhoeal diseases decreased by 47·0% (39·9–52·9). Non-communicable diseases contributed 1·73 billion (95% UI 1·54–1·94) DALYs in 2021, with a decrease in age-standardised DALY rates since 2010 of 6·4% (95% UI 3·5–9·5). Between 2010 and 2021, among the 25 leading Level 3 causes, age-standardised DALY rates increased most substantially for anxiety disorders (16·7% [14·0–19·8]), depressive disorders (16·4% [11·9–21·3]), and diabetes (14·0% [10·0–17·4]). Age-standardised DALY rates due to injuries decreased globally by 24·0% (20·7–27·2) between 2010 and 2021, although improvements were not uniform across locations, ages, and sexes. Globally, HALE at birth improved slightly, from 61·3 years (58·6–63·6) in 2010 to 62·2 years (59·4–64·7) in 2021. However, despite this overall increase, HALE decreased by 2·2% (1·6–2·9) between 2019 and 2021. Interpretation: Putting the COVID-19 pandemic in the context of a mutually exclusive and collectively exhaustive list of causes of health loss is crucial to understanding its impact and ensuring that health funding and policy address needs at both local and global levels through cost-effective and evidence-based interventions. A global epidemiological transition remains underway. Our findings suggest that prioritising non-communicable disease prevention and treatment policies, as well as strengthening health systems, continues to be crucially important. The progress on reducing the burden of CMNN diseases must not stall; although global trends are improving, the burden of CMNN diseases remains unacceptably high. Evidence-based interventions will help save the lives of young children and mothers and improve the overall health and economic conditions of societies across the world. Governments and multilateral organisations should prioritise pandemic preparedness planning alongside efforts to reduce the burden of diseases and injuries that will strain resources in the coming decades. Funding: Bill & Melinda Gates Foundation
Macromolecular Drug Delivery: Basic Principles and Therapeutic Applications.
Macromolecular drugs hold great promise as novel therapeutics of several major disorders, such as cancer and cardiovascular disease. However, their use is limited by lack of efficient, safe, and specific delivery strategies. Successful development of such strategies requires interdisciplinary collaborations involving researchers with expertise on e.g., polymer chemistry, cell biology, nano technology, systems biology, advanced imaging methods, and clinical medicine. This poses obvious challenges to the scientific community, but also provides opportunities for the unexpected at the interface between different disciplines. This review summarizes recent studies of macromolecular delivery that should be of interest to researchers involved in macromolecular drug synthesis as well as in vitro and in vivo drug delivery studies
Current developments in the EU competition law applicable to the maritime sector
Competition law, as it applies to the maritime industry has on a global scale been subject to a "laissez-faire"-attitude. In fact, collusion has been encouraged. Collusion in the maritime industry has its historic origin in the colonial period. The evolution within this particular industry truly is a study in industrial organizational structure.This Thesis sets out to explain and analyze the current regulatory scheme of the European Union, as it applies to the maritime industry (European, as well as non-European). This is accomplished through an in-depth statutory interpretation of EU Council Regulation 4056/86 dated 22/12 1986, laying down detailed rules for the application of Articles 85 and 86 of the Treaty of Rome to the maritime transport (Conferences), as well as the Commission Regulation 870/95 dated April 20, 1995 on the application of Article 85(3) of the Treaty of Rome to certain categories of agreements, decisions and concerted practices between liner shipping companies (Consortia).This Thesis concludes that the former regulatory scheme is no longer up to date and thus requires replacement. The Thesis favours current developments within the maritime industry which call for increased co-operation and concentration among the carriers and providers of services (as well as co-operation as between the carriers and shippers), counter-balanced by restrictive regulation through the application of conditions, market share-restrictions and a limited five year application of the regulatory framework.The former regulatory scheme, Council-Regulation 4056/86, which remains in force, must therefore be interpreted restrictively, and in accordance with the provisions of the Treaty of Rome, in particular Articles 85 and 86.Finally, this Thesis provides various solutions to soften the impact of full-scale application of the competition law of the European Union, as it will be applied in the maritime industry
Knocking down disease: a progress report on siRNA therapeutics.
Small interfering RNAs (siRNAs), which downregulate gene expression guided by sequence complementarity, can be used therapeutically to block the synthesis of disease-causing proteins. The main obstacle to siRNA drugs - their delivery into the target cell cytosol - has been overcome to allow suppression of liver gene expression. Here, we review the results of recent clinical trials of siRNA therapeutics, which show efficient and durable gene knockdown in the liver, with signs of promising clinical outcomes and little toxicity. We also discuss the barriers to more widespread applications that target tissues besides the liver and the most promising avenues to overcome them