569 research outputs found

    Temporal and spatial variability of glyoxal as observed from space

    Get PDF
    Glyoxal, CHO.CHO, is produced during the oxidation of volatile organic compounds, VOC, released by anthropogenic activities, biogenic processes and biomass burning. It has a short chemical lifetime of a few hours in the boundary layer and lower troposphere and therefore serves as an indicator and a marker of photochemical hot-spots and their response to changing atmospheric conditions around the globe. For this reason more than five years of CHO.CHO observations (2002–2007), retrieved from the radiances measured by the satellite instrument SCIAMACHY, were obtained and analyzed both temporally and spatially. The largest columns of CHO.CHO (>6.10<sup>14</sup> molec cm<sup>−2</sup>) are found in the tropical and sub-tropical regions, associated with high biological activity and the plumes from vegetation fires. The majority of the identified hot spots are characterized by a well-defined seasonality: the highest values being observed during the warm and dry periods as a result of the enhanced biogenic, primarily isoprene, emissions and/or biomass burning from natural or man-made fires. The regions influenced by anthropogenic pollution also encounter enhanced amounts of glyoxal. The ratio "CHO.CHO to HCHO, R<sub><I>GF</I></sub>" over the biogenically influenced photochemical hot-spots is approximately 0.045. For the studied regions, the presence of pyrogenic and anthropogenic emissions increases and decreases this number respectively. Although the 2002–2007 period of observation is limited, over the northeastern Asia a significant annual increase in CHO.CHO in addition to a seasonal cycle is reported

    Inelastic scattering in ocean water and its impact on trace gas retrievals from satellite data

    Get PDF
    Over clear ocean waters, photons scattered within the water body contribute significantly to the upwelling flux. In addition to elastic scattering, inelastic Vibrational Raman Scattering (VRS) by liquid water is also playing a role and can have a strong impact on the spectral distribution of the outgoing radiance. Under clear-sky conditions, VRS has an influence on trace gas retrievals from space-borne measurements of the backscattered radiance such as from e.g. GOME (Global Ozone Monitoring Experiment). The effect is particularly important for geo-locations with small solar zenith angles and over waters with low chlorophyll concentration.<br> <br> In this study, a simple ocean reflectance model (Sathyendranath and Platt, 1998) accounting for VRS has been incorporated into a radiative transfer model. The model has been validated by comparison with measurements from a swimming-pool experiment dedicated to detect the effect of scattering within water on the outgoing radiation and also with selected data sets from GOME. The comparisons show good agreement between experimental and model data and highlight the important role of VRS.<br> <br> To evaluate the impact of VRS on trace gas retrieval, a sensitivity study was performed on synthetic data. If VRS is neglected in the data analysis, errors of more than 30% are introduced for the slant column (<i>SC</i>) of BrO over clear ocean scenarios. Exemplarily DOAS retrievals of BrO from real GOME measurements including and excluding a VRS compensation led to comparable results as in the sensitivity study, but with somewhat smaller differences between the two analyses.<br> <br> The results of this work suggest, that DOAS retrievals of atmospheric trace species from measurements of nadir viewing space-borne instruments have to take VRS scattering into account over waters with low chlorophyll concentrations, and that a simple correction term is enough to reduce the errors to an acceptable level

    Thermal ageing phenomena and strategies towards reactivation of NO x - storage catalysts

    Get PDF
    The thermal ageing and reactivation of Ba/CeO2 and Ba/Al2O3 based NO x -storage/ reduction (NSR) catalysts was studied on model catalysts and catalyst systems at the engine. The mixed oxides BaAl2O4 and BaCeO3, which lower the storage activity, are formed during ageing above 850°C and 900°C, respectively. Interestingly, the decomposition of BaCeO3 in an atmosphere containing H2O/NO2 leads again to NO x -storage active species, as evidenced by comparison of fresh, aged and reactivated Pt-Ba/CeO2 based model catalysts. This can be technically exploited, particularly for the Ba/CeO2 catalysts, as reactivation studies on thermally aged Ba/CeO2 and Ba/Al2O3 based NSR catalysts on an engine bench showed. An on-board reactivation procedure is presented, that improved the performance of a thermally aged catalyst significantl

    SCIAMACHY formaldehyde observations: constraint for isoprene emission estimates over Europe?

    Get PDF
    Formaldehyde (HCHO) is an important intermediate compound in the degradation of volatile organic compounds (VOCs) in the troposphere. Sources of HCHO are largely dominated by its secondary production from VOC oxidation, methane and isoprene being the main precursors in unpolluted areas. As a result of the moderate lifetime of HCHO, its spatial distribution is determined by reactive hydrocarbon emissions. We focus here on Europe and investigate the influence of the different emissions on HCHO tropospheric columns with the CHIMERE chemical transport model in order to interpret the comparisons between SCIAMACHY and simulated HCHO columns. Europe was never specifically studied before for these purposes using satellite observations. The bias between measurements and model is less than 20% on average. The differences are discussed according to the errors on the model and the observations and remaining discrepancies are attributed to a misrepresentation of biogenic emissions. This study requires the characterisation of: (1) the model errors and performances concerning formaldehyde. The errors on the HCHO columns, mainly related to chemistry and mixed emission types, are evaluated to 2&amp;times;10&lt;sup&gt;15&lt;/sup&gt; molecule/cm&lt;sup&gt;2&lt;/sup&gt; and the model performances evaluated using surface measurements are satisfactory (~13%); (2) the observation errors that define the needs in spatial and temporal averaging for meaningful comparisons. Using SCIAMACHY observations as constraint for biogenic isoprene emissions in an inverse modelling scheme reduces their uncertainties by about a factor of two in region of intense emissions. The retrieved correction factors for the isoprene emissions range from a factor of 0.15 (North Africa) to a factor of 2 (Poland, the United Kingdom) depending on the regions

    The influence of natural and anthropogenic secondary sources on the glyoxal global distribution

    Get PDF
    Glyoxal, the smallest dicarbonyl, which has recently been observed from space, is expected to provide indications on volatile organic compounds (VOC) oxidation and secondary aerosol formation in the troposphere. Glyoxal (CHOCHO) is known to be mostly of natural origin and is produced during biogenic VOC oxidation. However, a number of anthropogenically emitted hydrocarbons, like acetylene and aromatics, have been positively identified as CHOCHO precursors. The present study investigates the contribution of pollution to the CHOCHO levels by taking into account the secondary chemical formation of CHOCHO from precursors emitted from biogenic, anthropogenic and biomass burning sources. The impact of potential primary land emissions of CHOCHO is also investigated. A global 3-dimensional chemistry transport model of the troposphere (TM4-ECPL) able to simulate the gas phase chemistry coupled with all major aerosol components is used. &lt;br&gt;&lt;br&gt; The secondary anthropogenic contribution from fossil fuel and industrial VOCs emissions oxidation to the CHOCHO columns is found to reach 20–70% in the industrialized areas of the Northern Hemisphere and 3–20% in the tropics. This secondary CHOCHO source is on average three times larger than that from oxidation of VOCs from biomass burning sources. The chemical production of CHOCHO is calculated to equal to about 56 Tg y&lt;sup&gt;&amp;minus;1&lt;/sup&gt; with 70% being produced from biogenic hydrocarbons oxidation, 17% from acetylene, 11% from aromatic chemistry and 2% from ethene and propene. CHOCHO is destroyed in the troposphere primarily by reaction with OH radicals (23%) and by photolysis (63%), but it is also removed from the atmosphere through wet (8%) and dry deposition (6%). Potential formation of secondary organic aerosol through CHOCHO losses on/in aerosols and clouds is neglected here due to the significant uncertainties associated with the underlying chemistry. The global annual mean CHOCHO burden and lifetime in the model domain are estimated to be 0.02 Tg (equal to the global burden seen by SCIAMACHY over land for the year 2005) and about 3 h, respectively. The model results are compared with satellite observations of CHOCHO columns. When accounting only for the secondary sources of CHOCHO in the model, the model underestimates CHOCHO columns observed by satellites. This is attributed to an overestimate of CHOCHO sinks or a missing global source of about 20 Tg y&lt;sup&gt;&amp;minus;1&lt;/sup&gt;. Using the current primary emissions of CHOCHO from biomass burning together with the anthropogenic combustion sources of about 7 Tg y&lt;sup&gt;&amp;minus;1&lt;/sup&gt; leads to an overestimate by the model over hot spot areas

    Measurements of O3</sub>, NO<sub>2</sub> and BrO at the Kaashidhoo Climate Observatory (KCO) during the INDOEX (INDian Ocean EXperiment) Campaign using ground based DOAS (Differential Optical Absorption Spectroscopy) and satellite based GOME (Global Ozone Monitoring Experiment) data

    No full text
    International audienceThe INDian Ocean EXperiment (INDOEX) was an international, multi-platform field campaign to measure long-range transport of air masses from South and South-East-(SE) Asia towards the Indian Ocean. During the dry monsoon season between January and March 1999, local measurements were carried out from ground based platforms and were compared with satellite based data. The objective of this study was to characterise stratospheric and tropospheric trace gas amounts in the equatorial region, and to investigate the impact of air pollution at this remote site. For the characterisation of the chemical composition of the outflow from the S-SE-Asian region, we performed ground based dual-axis-DOAS (Differential Optical Absorption Spectroscopy) measurements at the KCO (Kaashidhoo Climate Observatory) in the Maldives (5.0° N, 73.5° E). The ground based dual-axis-DOAS measurements were conducted using two different observation modes (off-axis and zenith-sky). This technique allows the separation of the tropospheric and stratospheric columns for different trace gases like O3 and NO2. These dual-axis DOAS data were compared with O3-sonde measurements performed at KCO and satellite based GOME (Global Ozone Measuring Experiment) data during the intensive measuring phase of the INDOEX campaign in February and March 1999. From GOME observations, tropospheric and stratospheric columns for O3 and NO2 were retrieved. In addition, the analysis of the O3-sonde measurements allowed the determination of the tropospheric O3 amount. The comparison shows that the results of all three measurement systems agree within their error limits. During the INDOEX campaign, background conditions were observed most of the time, but in a single case an increase of tropospheric NO2 during a short pollution event was observed and the impact on the vertical columns was calculated. In the GOME measurements, evidence was found for large tropospheric contributions to the BrO budget, probably located in the free troposphere and present throughout the year. The latter has been investigated by the comparison of satellite pixels influenced by high and low cloud conditions based on GOME data which allows the determination of the detection limit of tropospheric BrO columns

    Satellite measurements of formaldehyde linked to shipping emissions

    Get PDF
    International shipping is recognized as a pollution source of growing importance, in particular in the remote marine boundary layer. Nitrogen dioxide originating from ship emissions has previously been detected in satellite measurements. This study presents the first satellite measurements of formaldehyde (HCHO) linked to shipping emissions as derived from observations made by the Global Ozone Monitoring Experiment (GOME) instrument. &lt;br&gt;&lt;br&gt; We analyzed enhanced HCHO tropospheric columns from shipping emissions over the Indian Ocean between Sri Lanka and Sumatra. This region offers good conditions in term of plume detection with the GOME instrument as all ship tracks follow a single narrow track in the same east-west direction as used for the GOME pixel scanning. The HCHO signal alone is weak but could be clearly seen in the high-pass filtered data. The line of enhanced HCHO in the Indian Ocean as seen in the 7-year composite of cloud free GOME observations clearly coincides with the distinct ship track corridor from Sri Lanka to Indonesia. The observed mean HCHO column enhancement over this shipping route is about 2.0&amp;times;10&lt;sup&gt;15&lt;/sup&gt; molec/cm&lt;sup&gt;2&lt;/sup&gt;. &lt;br&gt;&lt;br&gt; Compared to the simultaneously observed NO&lt;sub&gt;2&lt;/sub&gt; values over the shipping route, those of HCHO are substantially higher; also the HCHO peaks are found at larger distance from the ship routes. These findings indicate that direct emissions of HCHO or degradation of emitted NMHC cannot explain the observed enhanced HCHO values. One possible reason might be increased CH&lt;sub&gt;4&lt;/sub&gt; degradation due to enhanced OH concentrations related to the ship emissions, but this source is probably too weak to fully explain the observed values. &lt;br&gt;&lt;br&gt; The observed HCHO pattern also agrees qualitatively well with results from the coupled earth system model ECHAM5/MESSy applied to atmospheric chemistry (EMAC). However, the modelled HCHO values over the ship corridor are two times lower than in the GOME high-pass filtered data. This might indicate uncertainties in the satellite data and used emission inventories and/or that the in-plume chemistry taking place in the narrow path of the shipping lanes are not well represented at the rather coarse model resolution

    Ground-based measurements of tropospheric and stratospheric bromine monoxide above Nairobi (1° S, 36° E)

    No full text
    International audienceGround based observations of stratospheric and tropospheric bromine monoxide, BrO, from a multi axial differential optical absorption spectrometer, MAXDOAS, located at the UNEP/UNON site in Nairobi (1° S, 36° E) are presented for the year 2003. Differences in BrO slant column densities at 90° and 80° solar zenith angle retrieved from the zenith-sky measurements are used to study stratospheric BrO. They show only small variations with season, as expected for the small seasonality in stratospheric Bry and NO2 in this region. A pronounced diurnal variation can be observed, the average value for the morning being 1.3×1014 molecules/cm2 and for the evening 1.5×1014 molecules/cm2. The measurements are compared with simulations from a one-dimensional photochemical stacked box model which is coupled with a radiative transfer model to allow direct comparisons between the observations and the model calculations. In general the model reproduces the measurements very well. The differences in the absolute values are 15% for the evening and 20% for the morning which is within the limits of the combined uncertainties. Both seasonality and diurnal variation are well reproduced by the model. A sensitivity study shows that inclusion of the reaction BrONO2 + O(3P) significantly improves the agreement between model calculations and measurements, indicating an important role of this reaction in the stratosphere near to the equator. Tropospheric BrO columns and profile information is derived from the combined results obtained in the different viewing directions for the average over several clear days. The resulting tropospheric BrO columns are in the range of 4?7.5×1012 molecules/cm2 which is significant but lower than in previous studies at mid and high latitudes. The vertical distribution of the tropospheric BrO peaks at about 3 km indicating the absence of local sources at this high altitude site

    Transport and build-up of tropospheric trace gases during the MINOS campaign: comparision of GOME, in situ aircraft measurements and MATCH-MPIC-data

    Get PDF
    The MINOS (Mediterranean INtensive Oxidant Study) campaign was an international, multi-platform field campaign to measure long-range transport of air-pollution and aerosols from South East Asia and Europe towards the Mediterranean basin during August 2001. High pollution events were observed during this campaign. For the Mediterranean region enhanced tropospheric nitrogen dioxide (NO<sub>2</sub>) and formaldehyde (HCHO), which are precursors of tropospheric ozone (O<sub>3</sub>), were detected by the satellite based GOME (Global Ozone Monitoring Experiment) instrument and compared with airborne in situ measurements as well as with the output from the global 3D photochemistry-transport model MATCH-MPIC (Model of Atmospheric Transport and CHemistry - Max Planck Institute for Chemistry). The increase of pollution in that region leads to severe air quality degradation with regional and global implications

    Webteaching: sequencing of subject matter in relation to prior knowledge of pupils

    Get PDF
    Two experiments are discussed in which the sequencing procedure of webteaching is compared with a linear sequence for the presentation of text material.\ud \ud In the first experiment variations in the level of prior knowledge of pupils were studied for their influence on the sequencing mode of text presentation. Prior knowledge greatly reduced the effect of the size of sequencing procedures.\ud \ud In the second experiment pupils with a low level of prior knowledge studied a text, following either a websequence or a linear sequence. Webteaching was superior to linear teaching on a number of dependent variables. It is concluded that webteaching is an effective sequencing procedure in those cases where substantial new learning is required
    • …
    corecore