34 research outputs found

    A Stochastic Model for Annual Reproductive Success

    Full text link

    Forecasting the Impacts of Silver and Bighead Carp on the Lake Erie Food Web

    Get PDF
    Nonindigenous bigheaded carps (Bighead Carp Hypophthalmichthys nobilis and Silver Carp H. molitrix; hereafter, “Asian carps” [AC]) threaten to invade and disrupt food webs and fisheries in the Laurentian Great Lakes through their high consumption of plankton. To quantify the potential effects of AC on the food web in Lake Erie, we developed an Ecopath with Ecosim (EwE) food web model and simulated four AC diet composition scenarios (high, low, and no detritus and low detritus with Walleye Sander vitreus and Yellow Perch Perca flavescens larvae) and two nutrient load scenarios (the 1999 baseline load and 2× the baseline [HP]). We quantified the uncertainty of the potential AC effects by coupling the EwE model with estimates of parameter uncertainty in AC production, consumption, and predator diets obtained using structured expert judgment. Our model projected mean ± SD AC equilibrium biomass ranging from 52 ± 34 to 104 ± 75 kg/ha under the different scenarios. Relative to baseline simulations without AC, AC invasion under all detrital diet scenarios decreased the biomass of most fish and zooplankton groups. The effects of AC in the HP scenario were similar to those in the detrital diet scenarios except that the biomasses of most Walleye and Yellow Perch groups were greater under HP because these fishes were buffered from competition with AC by increased productivity at lower trophic levels. Asian carp predation on Walleye and Yellow Perch larvae caused biomass declines among all Walleye and Yellow Perch groups. Large food web impacts of AC occurred in only 2% of the simulations, where AC biomass exceeded 200 kg/ha, resulting in biomass declines of zooplankton and planktivorous fish near the levels observed in the Illinois River. Our findings suggest that AC would affect Lake Erie's food web by competing with other planktivorous fishes and by providing additional prey for piscivores. Our methods provide a novel approach for including uncertainty into forecasts of invasive species' impacts on aquatic food webs. Received December 6, 2014; accepted July 15, 201

    Data from: A stochastic model for annual reproductive success

    No full text
    Demographic stochasticity can have large effects on the dynamics of small populations as well as on the persistence of rare genotypes and lineages. Survival is sensibly modeled as a binomial process, but annual reproductive success (ARS) is more complex and general models for demographic stochasticity do not exist. Here we introduce a stochastic model framework for ARS and illustrate some of its properties. We model a sequence of stochastic events: nest completion, the number of eggs or neonates produced, nest predation, and the survival of individual offspring to independence. We also allow multiple nesting attempts within a breeding season. Most of these components can be described by Bernoulli or binomial processes; the exception is the distribution of offspring number. Using clutch and litter size distributions from 53 vertebrate species, we demonstrate that among‐individual variability in offspring number can usually be described by the generalized Poisson distribution. Our model framework allows the demographic variance to be calculated from underlying biological processes and can easily be linked to models of environmental stochasticity or selection because of its parametric structure. In addition, it reveals that the distributions of ARS are often multimodal and skewed, with implications for extinction risk and evolution in small populations

    Implementing invasive species control: a case study of multi-jurisdictional coordination at Lake Tahoe, USA

    No full text
    Biological invasions are increasing in frequency and the need to mitigate or control their effects is a major challenge to natural resource managers. Failure to control invasive species has been attributed to inadequate policies, resources or scientific knowledge. Often, natural resource managers with limited funds are tasked with the development of an invasive species control program without access to key decision-support information such as whether or not an invasive species will cause damage, and what the extent of that damage may be. Once damages are realized, knowing where to allocate resources and target control efforts is not straightforward. Here we present the history of invasive species policy development and management in a large, multi-jurisdictional and multi-use aquatic ecosystem. We present a science-based decision-support tool for on-the-ground aquatic invasive species (AIS) control to support the development of a sustainable control program. Lastly, we provide a set of recommendations for managers desiring to make an AIS control implementation plan based upon our development of novel invasive species research, policy and management in Lake Tahoe (USA). We find that a sustainable invasive species control program is possible when science, coordination and outreach are integrated

    Estimating relative risk of within-lake aquatic plant invasion using combined measures of recreational boater movement and habitat suitability

    No full text
    Effective monitoring, prevention and impact mitigation of nonindigenous aquatic species relies upon the ability to predict dispersal pathways and receiving habitats with the greatest risk of establishment. To examine mechanisms affecting species establishment within a large lake, we combined observations of recreational boater movements with empirical measurements of habitat suitability represented by nearshore wave energy to assess the relative risk of Eurasian watermilfoil (Myriophyllum spicatum) establishment. The model was evaluated using information from a 17 year (1995–2012) sequence of M. spicatum presence and absence monitoring. M. spicatum presence was not specifically correlated with recreational boater movements; however its establishment appears to be limited by wave action in Lake Tahoe. Of the sites in the “High” establishment risk category (n = 37), 54% had current or historical infestations, which included 8 of the 10 sites with the highest relative risk. Of the 11 sites in the “Medium” establishment risk category, 5 had current or historical M. spicatum populations. Most (76%) of the sites in the “Low” establishment risk category were observed in locations with higher wave action. Four sites that received zero boater visits from infested locations were occupied by M. spicatum. This suggests that the boater survey either represents incomplete coverage of boater movement, or other processes, such as the movement of propagules by surface currents or introductions from external sources are important to the establishment of this species. This study showed the combination of habitat specific and dispersal data in a relative risk framework can potentially reduce uncertainty in estimates of invasion risk

    Estimating relative risk of within-lake aquatic plant invasion using combined measures of recreational boater movement and habitat suitability

    No full text
    Effective monitoring, prevention and impact mitigation of nonindigenous aquatic species relies upon the ability to predict dispersal pathways and receiving habitats with the greatest risk of establishment. To examine mechanisms affecting species establishment within a large lake, we combined observations of recreational boater movements with empirical measurements of habitat suitability represented by nearshore wave energy to assess the relative risk of Eurasian watermilfoil (Myriophyllum spicatum) establishment. The model was evaluated using information from a 17 year (1995–2012) sequence of M. spicatum presence and absence monitoring. M. spicatum presence was not specifically correlated with recreational boater movements; however its establishment appears to be limited by wave action in Lake Tahoe. Of the sites in the “High” establishment risk category (n = 37), 54% had current or historical infestations, which included 8 of the 10 sites with the highest relative risk. Of the 11 sites in the “Medium” establishment risk category, 5 had current or historical M. spicatum populations. Most (76%) of the sites in the “Low” establishment risk category were observed in locations with higher wave action. Four sites that received zero boater visits from infested locations were occupied by M. spicatum. This suggests that the boater survey either represents incomplete coverage of boater movement, or other processes, such as the movement of propagules by surface currents or introductions from external sources are important to the establishment of this species. This study showed the combination of habitat specific and dispersal data in a relative risk framework can potentially reduce uncertainty in estimates of invasion risk
    corecore