893 research outputs found

    Scientific Objectives of Deep Space Investigations. the Origin and Evolution of the Solar System

    Get PDF
    Spacecraft data used to explain origin and evolution of solar syste

    Analysis of a model with a common source of CP violation

    Full text link
    We work in a model where all CP violating phenomena have a common source. CP is spontaneously broken at a large scale VV through the phase of a complex singlet scalar. An additional SU(2)LSU(2)_L singlet vector-like down-type quark relates this high scale CP violation to low energy. We quantitatively analyze this model in the quark sector. We obtain the numerical values of the parameters of the Lagrangian in the quark sector for a specific ansatz of the 4×44\times4 down-type quark mass matrix where the weak phase is generated minimally. ZbˉbZ \bar b b vertex will modify in presence of the extra vector-like down-type quark. From the experimental lower bound of the partial decay width Z→bˉbZ\to \bar b b we find out the lower bound of the additional down-type quark mass. Tree level flavor changing neutral current appears in this model due to the presence of the extra vector-like down-type quark. We give the range of values of the mass splitting ΔmBq\Delta m_{B_q} in Bq0−Bˉq0B^0_q-{\bar B}^0_q system using SM box, ZZ mediating tree level and ZZ mediating one loop diagrams together for both q=d,sq=d, s. We find out the analytical expression for Γ12q\Gamma_{12}^q in this model from standard box, ZZ and Higgs mediated penguin diagrams for Bq0−Bˉq0B^0_q-{\bar B}^0_q system, q=d,sq=d,s. From this we numerically evaluate the decay width difference ∣ΔΓBq/ΓBq∣|\Delta\Gamma_{B_q}/\Gamma_{B_q}|. We also find out the numerical values of the CP asymmetry parameters aJa_J and aπa_\pi for the decays Bd0→J/ψKsB^0_d\to J/\psi K_s and Bd0→π+π−B^0_d\to \pi^+ \pi^- respectively. We get the lower bound of the scale VV through the upper bound of the strong CP phase.Comment: 20 pages, no figures New materials and references have been added. Text has been modified. To be appear in J.Phys.

    High power, high repetition rate laser-based sources for attosecond science

    Get PDF
    Within the last two decades attosecond science has been established as a novel research field providing insights into the ultrafast electron dynamics that follows a photoexcitation or photoionization process. Enabled by technological advances in ultrafast laser amplifiers, attosecond science has been in turn, a powerful engine driving the development of novel sources of intense ultrafast laser pulses. This article focuses on the development of high repetition rate laser-based sources delivering high energy pulses with a duration of only a few optical cycles, for applications in attosecond science. In particular, a high power, high repetition rate optical parametric chirped pulse amplification system is described, which was developed to drive an attosecond pump-probe beamline targeting photoionization experiments with electron-ion coincidence detection at high acquisition rates

    Differences in vector-genome processing and illegitimate integration of non-integrating lentiviral vectors

    Get PDF
    A variety of mutations in lentiviral vector expression systems have been shown to generate a non-integrating phenotype. We studied a novel 12 base-pair U3-long terminal repeats (LTR) integrase (IN) attachment site deletion (U3-LTR att site) mutant and found similar physical titers to the previously reported IN catalytic core mutant IN/D116N. Both mutations led to a greater than two log reduction in vector integration; with IN/D116N providing lower illegitimate integration frequency, whereas the U3-LTR att site mutant provided a higher level of transgene expression. The improved expression of the U3-LTR att site mutant could not be explained solely based on an observed modest increase in integration frequency. In evaluating processing, we noted significant differences in unintegrated vector forms, with the U3-LTR att site mutant leading to a predominance of 1-LTR circles. The mutations also differed in the manner of illegitimate integration. The U3-LTR att site mutant vector demonstrated IN-mediated integration at the intact U5-LTR att site and non-IN-mediated integration at the mutated U3-LTR att site. Finally, we combined a variety of mutations and modifications and assessed transgene expression and integration frequency to show that combining modifications can improve the potential clinical utility of non-integrating lentiviral vectors

    Attosecond streaking of photoelectron emission from disordered solids

    Full text link
    Attosecond streaking of photoelectrons emitted by extreme ultraviolet light has begun to reveal how electrons behave during their transport within simple crystalline solids. Many sample types within nanoplasmonics, thin-film physics, and semiconductor physics, however, do not have a simple single crystal structure. The electron dynamics which underpin the optical response of plasmonic nanostructures and wide-bandgap semiconductors happen on an attosecond timescale. Measuring these dynamics using attosecond streaking will enable such systems to be specially tailored for applications in areas such as ultrafast opto-electronics. We show that streaking can be extended to this very general type of sample by presenting streaking measurements on an amorphous film of the wide-bandgap semiconductor tungsten trioxide, and on polycrystalline gold, a material that forms the basis of many nanoplasmonic devices. Our measurements reveal the near-field temporal structure at the sample surface, and photoelectron wavepacket temporal broadening consistent with a spread of electron transport times to the surface

    Evidence and patterns of tuna spawning inside a large no-take marine protected area

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hernandez, C. M., Witting, J., Willis, C., Thorrold, S. R., Llopiz, J. K., & Rotjan, R. D. Evidence and patterns of tuna spawning inside a large no-take marine protected area. Scientific Reports, 9(1), (2019): 10772, doi:10.1038/s41598-019-47161-0.The Phoenix Islands Protected Area (PIPA), one of the world’s largest marine protected areas, represents 11% of the exclusive economic zone of the Republic of Kiribati, which earns much of its GDP by selling tuna fishing licenses to foreign nations. We have determined that PIPA is a spawning area for skipjack (Katsuwonus pelamis), bigeye (Thunnus obesus), and yellowfin (Thunnus albacares) tunas. Our approach included sampling larvae on cruises in 2015–2017 and using a biological-physical model to estimate spawning locations for collected larvae. Temperature and chlorophyll conditions varied markedly due to observed ENSO states: El Niño (2015) and neutral (2016–2017). However, larval tuna distributions were similar amongst years. Generally, skipjack larvae were patchy and more abundant near PIPA’s northeast corner, while Thunnus larvae exhibited lower and more even abundances. Genetic barcoding confirmed the presence of bigeye (Thunnus obesus) and yellowfin (Thunnus albacares) tuna larvae. Model simulations indicated that most of the larvae collected inside PIPA in 2015 were spawned inside, while stronger currents in 2016 moved more larvae across PIPA’s boundaries. Larval distributions and relative spawning output simulations indicated that both focal taxa spawned inside PIPA in all 3 study years, demonstrating that PIPA is protecting viable tuna spawning habitat.Funding and support was provided by the PIPA Trust, Waitt and Oceans5 Foundations, Sea Education Association, the Prince Albert of Monaco Foundation II, New England Aquarium, and Boston University to R.R. and J.W. C.H. was additionally supported by a National Science Foundation Graduate Research Fellowship. J.L. was additionally supported by NOAA through the Cooperative Institute for the North Atlantic Region (CINAR) under Cooperative Agreement NA14OAR4320158 in the form a CINAR Fellow Award, as well as by the WHOI Academic Programs Office. We thank A. Breef-Pilz for onboard sampling assistance, as well as S. Glancy, J. Pringle, E. Martin, J. Fisher, H. Goss, J. Jaskiel, S. Sheehan, and C. Moller for lab assistance. We thank the PIPA Trust and the PIPA Implementation Office for their support, as well as on-ship Kiribati Observers for their support and assistance: Tekeua Auatabu, Iannang Teaioro, Toaea Beiateuea, Taremon Korere, Kareati Waysang, and Moamoa Kabuati. We thank Q. Hanich for reading sections of this paper in advance. This research was conducted under Kiribati and PIPA permits PRP #s 3/17, 1/16, and 2/15 to JW

    Physical Acoustics

    Get PDF
    Contains reports on four research projects.U. S. Navy (Office of Naval Research) under Contract Nonr- 1841(42
    • …
    corecore