
VIII. PHYSICAL ACOUSTICS

Prof. K. U. Ingard
Dr. L. W. Dean III
Dr. G. C. Maling, Jr.
Dr. H. L. Willke, Jr.

B. L.
P. A.
K. W.
G. M.
A. A.

Chrisman
Fleury V
Gentle
Irwin
Maduemezia

W. M. Manheimer
J. H. Turner
S. D. Weiner
J. M. Witting

A. SOUND EMISSION FROM AN AMPLITUDE-MODULATED RADIOFREQUENCY

DISCHARGE

The generation of sound waves by means of a modulated high-frequency discharge

described in the last report has been further investigated by measurements of the sound

pressure generated as a function of the gas pressure. The modulated discharge is

located at one end of a tube, and the sound is received at the other end. To prevent

standing waves in the tube, the tube is terminated by absorptive material which prevents
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Fig. VIII-1.

Pressure dependence of the sound inten-
sity produced by amplitude-modulated RF
discharge in Helium. Frequency: (a) 10 kc;
(b) 15 kc; (c) 20 kc; (d) 25 kc; (e) 30 kc;
(f) 35 kc; (g) 60 kc.
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sound reflection. A typical sequence of curves illustrating the pressure dependence on

the acoustic intensity is given in Fig. VIII-1. These curves refer to generation into

helium. It is interesting to note that a "resonance" occurs at a certain pressure, and

the pressure at this resonance increases as the frequency increases. Similar results

have been obtained for argon. This effect is not yet understood and further work is in

progress.

B. L. Chrisman, G. M. Irwin, U. Ingard
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B. FLOW STABILITY AND THE ENERGY IDENTITY

Difficulty with a class of perturbed flows of irregular time dependence, whose insta-

bility would seem to indicate creation of energy, has led to an investigation of the energy

sources for unstable flows. It will be seen that, in an exact analysis, the total kinetic

energy of perturbation tends to zero with time for perturbations not affecting the strength

of the energy sources for the basic flow.

The energy identity for the Navier-Stokes equations is obtained formally as follows:

0 = d3 y Vi(ati- vi i j j i+i
V

=~ e d32 i i jd= d3yt -vviAv + v a j(2P
V

Clearly, if v 0 0, and if the boundary conditions on P and the vi are so prescribed

that the surface integrals in (1) vanish, then the v. will tend to zero for large t. In par-
2 1

ticular, if v is integrable, we have

' v2 3 3
t 2 d3y = -v (v )

2 d3y < 0,

so that v2 d3 y must continue to decrease in time as long as one of the
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v. is nonzero somewhere.
1

When applied to the stability problem for parallel flows, the energy identity demon-

strates for us the nonexistence of spatially localized instabilities: plausibly enough, the

perturbation must encompass an energy source for the basic flow.

If we suppose the basic parallel flow to be directed along the x 3 coordinate, we may

write for the perturbed flow v i = u i + W(x 1 , x Z ) i3 P = p + x3Po, with -vAW6i 3 +
a.x P = 0.
13O

In order to avoid difficulties associated with an infinite total energy

5 dx 1 dx2 
5 dx 3 w 2

for the basic flow, we consider the term-by-term limit of the difference between the

energy identities associated with the perturbed and unperturbed flows as we extend the

domain of integration to the whole space. Supposing that the u i are integrable and

vanish at rigid boundaries and, for simplicity, that W is bounded, and suppressing in

advance terms that vanish in the limit, we get

&s5 d 3 y at + v(a jv) 2 - v(2jWi) + 5 dS[-vWanu 3
+ 6 n 3 Wp+

"

V

d3 t - (jui )2 - v(W) u3 + dS[-vW u3 +n 3Wp+. ..

V V V

d3 y ' + v( ui 2 + dS[-vW U 3

E 3  Boundaries

+ lim 5 dx 1 5 dx 2 W[p(x 3 )-p(-x 3 )]. (2)
x 3-

If there are no sliding boundaries, then WB 0 so that (2) gives us what

we want: If p(x 3 ) - p(-x 3 ) = o(1), then all surface contributions vanish, so that, with

v * 0, d 3 v is strictly negative as long as any of the u. are nonzero. Under

these conditions, v2 cannot remain everywhere positive unless the u. tend to zero almost

everywhere in time. If sliding boundaries are admitted, these considerations hold only

if anu 3 vanishes at such boundaries. In general, perturbations must couple to the energy

sources for the basic flow if they are not to decay in time; that is, the surface terms

must not vanish.

In the special case v = 0, the basic flow maintains itself without energy sources,
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so Po = 0, and it is no longer possible to extract energy from sliding boundaries. On

the other hand, since no sources of dissipation exist, we have

d3y = 0,

even when the remaining surface term vanishes, so that the perturbed flow maintains

itself in the mean.

H. L. Willke, Jr.

C. ACOUSTIC POWER RADIATED BY A MONOPOLE SOUND SOURCE IN A DUCT

The acoustic power (W) radiated by a sound source located near boundaries may be

quite different from the power output in free space (W ).2 Ingard and Lamb and

Waterhouse2 have dealt with sources near rigid surfaces. Solutions for W/W when

the surface is partially reflecting have been presented by Grine,3 Maling,4-6 and

Waterhouse7 for various boundary conditions. For a constant-strength (that is, con-

stant mass flow) monopole the expression 6 for W/W ° is

W 1W =1 +- Im (pr), (1)
o kA

where Im (pr) is the imaginary part of the reflected pressure at the source. The source

pressure is ps = (A/r) exp(ikr), and k is the wave number, w/c. The solutions for

W/W 0 that have been worked out thus far deal with sources between parallel walls, in

a corner, and over an infinite plane.

One interesting extension of this work is a calculation of W/W for a point-monopole

source in a duct. If the source is located at position (x , Yo, z ) in a duct that has

dimensions a and b in the x-y plane, and is infinite in the z-direction, the sound field

can be shown to be

p(x, y, z) = 2ri wQ {cos (kxx- x ) cos (kxx - x )
pxy) Qkxky  k2-k 21/2

xy xy

cos (kyy- y) cos (kyYo_ y)} exp(ikz(z-zo)-it), (2)

where p is the sound pressure at the field point, Qo is the strength of the source, o

is the frequency, kx and ky are solutions to tan (knL/2) = --ikp /k n for the even modes,

and cot (knL/2) = ikpn/k n for the odd modes. Here, n represents x or y, and L rep-

resents a or b. A and A are normalization constants, and k = (k2-k-2 1/2. Also,
x y z xy/
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n = -tan- 1 (ikpn/k ).

For hard walls in a duct ( n = 0), and the power output of the source can be found

by integration of the acoustic intensity in the propagating modes. For example, the

ratio W/W 0 is 2rr/k2ab for the plane-wave mode, and can be found easily for the higher

modes. Thus, W/W 0 can be found as a function of k for a constant-strength source.

If the source is of the constant-pressure type, it is necessary to evaluate Eq. 2 near

the source, and remove the asymptotic eikr/r dependence in order to find both the real

and imaginary parts of the reflected pressure at the source. Both are needed because

the mass flow produced by the source must adjust itself to keep the total pressure at

the surface of the source constant.

If the duct walls are hard, or if a plane-wave reflection coefficient can be used to

describe the effect of the boundary, an image description can be used to find the reflected

pressure at the source. It can be shown that the ratio W/W for a constant-pressure

source of radius a is

1
W 1 + k Im (pr)Sr(3)
W o 1+ + 2a Re (pr ) + a pr l 2

Note that p is assumed to be of the form eikr/r, and therefore has dimensions 1/length.

Image solutions have been found for a source in the center of a square duct with rigid
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Fig. VIII-2. Real and imaginary parts of the reflected pressure
at the source for k = 12. 9. The abscissa is the
array size, the points being those that satisfy the
criteria that have been discussed.
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walls (side length = L) by programming an IBM 7094 computer to sum up the images.

The program was written so that the pressure field from groups of images (at least four
images to a group) were printed out when the total image strength was less than one.
This procedure insured that the convergence would be reasonably rapid. The cumulative
total was printed out for these groups. A typical calculation is shown in Fig. VIII-2.
The calculations are cut off when the array of images reaches 70 X 70, and it can be
seen that a 66 X 66 array (for the imaginary part of the pressure) and a 63 X 40 array
(for the real part of the pressure) are much more consistent with earlier groups that
meet the criterion discussed above than the 70 X 70 array calculation which does not.
Thus, it is important to choose carefully the order in which the terms are taken to
insure -convergence of the partial sums of the series.

The ratio W/Wo can be found for a constant-strength source either by use of the
Green's function method described above, or by the summation of images. The latter
method was used in the calculation of the curves shown in Fig. VIII-3. This plot empha-
sizes the difference between the power output of the constant-strength source in free
space and the power output in a duct. An alternative method of treating the data is to
plot the power output relative to its value at k = 0. This has been done, and the results
are shown in Fig. VIII-4. It can be seen that coupling to the higher order modes is con-
siderably stronger than the coupling to the plane-wave mode (k < 6. 28 for the plane wave
mode, the first cross mode is not excited).

For a constant-pressure source the image technique is most convenient, and,
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Fig. VIII-3. W/Wo vs kL for a source in the center of a hard duct.0
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Fig. VIII-4. W/Wk=0 vs kL for a source in the center of a hard duct.
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Fig. VIII-5. W Q/Wp as a function of kL.
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according to Eq. 3, the ratio W/W is the same for either type of source if a = 0. For

a * 0, the image method is only approximate, but should be valid, provided that the

source size (a) is small compared with the x (or y) dimension (L) of the square duct.

The ratio WQ/Wp has been plotted in Fig. VIII-5 for three values of a, a = 0. 01 L,

a = 0. 05 L, and a = 0. 1 L. Here, Wp is the output of a constant pressure source, and

WQ is the output of a constant strength (volume velocity) source.

It can be seen from Fig. VIII-5 that for small sources the power output of a constant-

pressure source is nearly the same as for the constant-strength source. For larger

sources, the difference between the two types becomes greater. Since the image

description is strictly valid only for very small sources, no calculations were made for

values of a/L greater than 0. 1.

G. C. Maling, Jr., U. Ingard
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D. STUDIES OF SHOCK STRUCTURE

The observation of hydraulic jumps to shed light on the structure of collisionless

shock waves in plasma was reported in the last quarterly report. I These previous

experiments showed that neither the "thinnest shock hypothesis" nor the "thickest shock

hypothesis" has general validity. The experiments have continued. The new results,

when carried over to the plasma and coupled with some new plasma theory, contain

some novel features.

Hydraulic-jump structure has been examined at various water depths as a function

of Mach number. At small Mach numbers, below M = 1. 25, the structure is charac-

terized by waves whose length is fairly long, compared with the depth of water. These

waves are a permanent feature of the jump structure, in that they travel at exactly the

same speed as the jump, and so they stand still in jump coordinates. If gravity is the

predominant restoring force, these waves stand behind the jump; if, on the other hand,

surface tension is the predominant restoring force (this can be obtained experimentally
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by reducing the water depth to approximately 0. 5 cm), then they stand ahead.

These results can be carried over to plasma. There are plasma waves, the mag-

netoacoustic waves, which have all of the essential properties to make them a permanent

feature of the collisionless shock wave, like the long surface waves in shallow water.

Thus, the existence of finite-amplitude magnetoacoustic waves that stand in shock coor-

dinates is expected.

Some simple theorizing about these waves and their role in the collisionless shock

leads to the following predictions: If the magnetic field is perpendicular, or almost

perpendicular, to the direction of the shock, the waves will stand behind the shock front,

and will be of approximate length me/m i r., where m and m. are the masses of elec-
e 1

tron and ion, respectively, and r i is the gyroradius of an ion moving at the magneto-

acoustic speed. If, on the other hand, the magnetic field lies away from the plane

perpendicular to the shock direction, the waves will stand ahead of the shock front, and

will be of approximate length r . The transition between these regimes is smooth, and

occurs when the magnetic field is at an angle 7,me7mi away from the plane perpendicular

to the shock direction.

As the strength of hydraulic jumps is increased, the long wave becomes of such large

amplitude that it breaks, and the character of the hydraulic jump changes. Surface tur-

bulence now appears, as does a different wave, of much shorter wavelength. This

second wave, like the long wave that appears for weaker jumps, stands still in jump

coordinates. The excess energy carried by the supersonic flow into the jump front is

no longer converted to waves that carry the energy downstream; instead, the energy

is dissipated right at the jump front by viscous damping of the surface turbulence and

standing waves. There are two outstanding features in these stronger jumps. The fact

that the long wave is no longer excited and its consequences in the case of plasma

shocks was discussed in the previous report.1

Another feature is the pronounced tendency for short-wavelength waves traveling at

the same speed as the hydraulic jump to be excited, as well as the fact that the scale

of turbulence is largest around this wavelength. The three ingredients necessary for

this behavior are: (i) the long wave breaks, if strong enough; (ii) short-wavelength

waves traveling at the jump speed are possible; and (iii) standing waves are prefer-

entially excited.

These three ingredients are also present in the collisionless plasma. I can argue

on quite general grounds that waves whose phase velocity is the same as the source

speed (the shock front being the source, in this case) are preferentially excited, no

matter what the medium. As the amplitude of long (that is, of order r. or /meimr.)
1 e 1

waves increases, because of increasing Mach number, such long waves become unstable,

and so they "break" into smaller wavelength disturbances. The wavelengths that can

stand are of order (me/mi)ri and of order (wc/ p)ri, where w /w is the ratio of plasma
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frequency to ion-cyclotron frequency. The former mode is an electron-cyclotron wave;

the latter is an electrostatic oscillation. Their presence is expected for strong col-

lisionless shocks, and their decay by Landau damping and collisional damping should

provide the energy dissipation associated with the collisionless shock wave.

J. M. Witting
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