27 research outputs found
Iron-sparing Response of Mycobacterium avium subsp. paratuberculosis is strain dependent
<p>Abstract</p> <p>Background</p> <p>Two genotypically and microbiologically distinct strains of <it>Mycobacterium avium </it>subsp. <it>paratuberculosis </it>(MAP) exist - S and C MAP strains that primarily infect sheep and cattle, respectively. Concentration of iron in the cultivation medium has been suggested as one contributing factor for the observed microbiologic differences. We recently demonstrated that S strains have defective iron storage systems, leading us to propose that these strains might experience iron toxicity when excess iron is provided in the medium. To test this hypothesis, we carried out transcriptional and proteomic profiling of these MAP strains under iron-replete or -deplete conditions.</p> <p>Results</p> <p>We first complemented <it>M. smegmatis</it>Δ<it>ideR </it>with IdeR of C MAP or that derived from S MAP and compared their transcription profiles using <it>M. smegmatis mc</it><sup><it>2</it></sup><it>155 </it>microarrays. In the presence of iron, sIdeR repressed expression of <it>bfrA </it>and MAP2073c, a ferritin domain containing protein suggesting that transcriptional control of iron storage may be defective in S strain. We next performed transcriptional and proteomic profiling of the two strain types of MAP under iron-deplete and -replete conditions. Under iron-replete conditions, C strain upregulated iron storage (BfrA), virulence associated (Esx-5 and antigen85 complex), and ribosomal proteins. In striking contrast, S strain downregulated these proteins under iron-replete conditions. iTRAQ (isobaric tag for relative and absolute quantitation) based protein quantitation resulted in the identification of four unannotated proteins. Two of these were upregulated by a C MAP strain in response to iron supplementation. The iron-sparing response to iron limitation was unique to the C strain as evidenced by repression of non-essential iron utilization enzymes (aconitase and succinate dehydrogenase) and upregulation of proteins of essential function (iron transport, [Fe-S] cluster biogenesis and cell division).</p> <p>Conclusions</p> <p>Taken together, our study revealed that C and S strains of MAP utilize divergent metabolic pathways to accommodate in vitro iron stress. The knowledge of the metabolic pathways these divergent responses play a role in are important to 1) advance our ability to culture the two different strains of MAP efficiently, 2) aid in diagnosis and control of Johne's disease, and 3) advance our understanding of MAP virulence.</p
Leucine-rich alpha-2-glycoprotein-1 is upregulated in sera and tumors of ovarian cancer patients
<p>Abstract</p> <p>Background</p> <p>New biomarkers that replace or are used in conjunction with the current ovarian cancer diagnostic antigen, CA125, are needed for detection of ovarian cancer in the presurgical setting, as well as for detection of disease recurrence. We previously demonstrated the upregulation of leucine-rich alpha-2-glycoprotein-1 (LRG1) in the sera of ovarian cancer patients compared to healthy women using quantitative mass spectrometry.</p> <p>Methods</p> <p>LRG1 was quantified by ELISA in serum from two relatively large cohorts of women with ovarian cancer and benign gynecological disease. The expression of LRG1 in ovarian cancer tissues and cell lines was examined by gene microarray, reverse-transcriptase polymerase chain reaction (RT-PCR), Western blot, immunocytochemistry and mass spectrometry.</p> <p>Results</p> <p>Mean serum LRG1 was higher in 58 ovarian cancer patients than in 56 healthy women (89.33 ± 77.90 vs. 42.99 ± 9.88 ug/ml; p = 0.0008) and was highest among stage III/IV patients. In a separate set of 193 pre-surgical samples, LRG1 was higher in patients with serous or clear cell ovarian cancer (145.82 ± 65.99 ug/ml) compared to patients with benign gynecological diseases (82.53 ± 76.67 ug/ml, p < 0.0001). CA125 and LRG1 levels were moderately correlated (r = 0.47, p < 0.0001). <it>LRG1 </it>mRNA levels were higher in ovarian cancer tissues and cell lines compared to their normal counterparts when analyzed by gene microarray and RT-PCR. LRG1 protein was detected in ovarian cancer tissue samples and cell lines by immunocytochemistry and Western blotting. Multiple iosforms of LRG1 were observed by Western blot and were shown to represent different glycosylation states by digestion with glycosidase. LRG1 protein was also detected in the conditioned media of ovarian cancer cell culture by ELISA, Western blotting, and mass spectrometry.</p> <p>Conclusions</p> <p>Serum LRG1 was significantly elevated in women with ovarian cancer compared to healthy women and women with benign gynecological disease, and was only moderately correlated with CA125. Ovarian cancer cells secrete LRG1 and may contribute directly to the elevated levels of LRG1 observed in the serum of ovarian cancer patients. Future studies will determine whether LRG1 may serve as a biomarker for presurgical diagnosis, disease recurrence, and/or as a target for therapy.</p
Determination of the transphosphorylation sites of Jak2 kinase.
Janus kinases are the key enzymes involved in the initial transmission of signals in response to type I and II cytokines. Activation of the signal begins with the transphosphorylation of Jak kinases. Substrates that give rise to downstream events are recruited to the receptor complex in part by interactions with phosphorylated tyrosines. The identity of many of the phosphotyrosines responsible for recruitment has been elucidated as being receptor-based tyrosines. The ability of Jaks to recruit substrates through their own phosphotyrosines has been demonstrated for tyrosines in the kinase activation loop. Recent studies demonstrate that other tyrosines have implications in regulatory roles of Jak kinase activity. In this study, baculovirus-produced Jak2 was utilized to demonstrate that transphosphorylation of Jak kinases occurs on multiple residues throughout the protein. We demonstrate that among the tyrosines phosphorylated, those in the kinase domain occur as expected, but many other sites are also phosphorylated. The tyrosines conserved in the Jak family are the object of this study, although many of them are phosphorylated, many are not. This result suggests that conservation of tyrosines is perhaps as important in maintaining structure of the Jak family. Additionally, non-Jak family conserved tyrosines are phosphorylated suggesting that the individual Jaks ability to phosphorylated specific tyrosines may influence signals emitting from activated Jaks
Data from: Attracting Common Carp to a bait site with food reveals strong positive relationships between fish density, feeding activity, environmental DNA, and sex pheromone release that could be used in invasive fish management
Measurement of environmental DNA (eDNA) is becoming a common technique to survey for rare and invasive fish due to its sensitivity and specificity. However, its utility is limited by an incomplete understanding of factors governing its sources and fates. Failure to detect eDNA is especially difficult to interpret so surveillance techniques often collect large numbers of samples across broad regions. If, however, fish could be reliably attracted to a single location where their eDNA could be easily measured that would be useful. We conducted a proof‐of‐concept study of this idea using invasive Common Carp. We monitored the distribution of radio‐tagged Carp and their eDNA across a 67 ha lake focusing at the bait site while a pheromone (Prostaglandin F2α; PGF2α) was also measured to determine their reproductive condition. Prior to baiting, Carp were patchily distributed and while eDNA was occasionally detectable, it was patchy and only loosely associated with moderately dense groups of fish. Further, neither Carp, nor their eDNA were consistently measurable at the bait site and surrounding region, and the pheromone was not measurable at all. However, once baiting commenced, Carp started visiting the bait site and feeding, especially at night, where eDNA levels increased 500‐fold as fish densities doubled and PGF2α became detectable. Fish presence, eDNA and pheromone concentrations peaked at night after 6 days, strongly suggesting feeding activity was the main driver. While the presence of eDNA precisely coincided with this aggregation, levels had dropped dramatically within 5 m. PGF2α levels dropped less rapidly and demonstrated the presence of live mature fish. We suggest that food could be used to train fish to come to locations where they otherwise are too scarce to be reliably measured, increasing their eDNA release, making them measurable, and their reproductive condition also discernable by measuring pheromones
A novel intramolecular negative regulation of mouse Jak3 activity by tyrosine 820
Jak3, a member of the Janus kinase family, is essential for the cytokine receptor common gamma chain (gamma c)-mediated signaling. During activation of Jak3, tyrosine residues are phosphorylated and potentially regulate its kinase activity. We identified a novel tyrosine phosphorylation site within mouse Jak3, Y820, which is conserved in human Jak3, Y824. IL-2-induced tyrosine phosphorylation of Jak3 Y824 in human T cell line HuT78 cells was detected by using a phosphospecific, pY824, antibody. Mutation of mouse Jak3 Y820 to alanine (Y820A) showed increased autophosphorylation of Jak3 and enhanced signal transducer and activator of transcription 5 (STAT5) tyrosine phosphorylation and transcriptional activation. Stably expressed Jak3 Y820A in F7 cells, an IL-2 responsive mouse pro-B cell line Ba/F3, exhibited enhanced IL-2-dependent cell growth. Mechanistic studies demonstrated that interaction between Jak3 and STAT5 increased in Jak3 Y820A compared to wild-type Jak3.These data suggest that Jak3 Y820 plays a role in negative regulation of Jak3mediated STAT5 signaling cascade upon IL-2-stimulation. We speculate that this occurs through an interaction promoted by the tyrosine phosphorylated Y820 or a conformational change by Y820 mutation with either the STAT directly or with the recruitment of molecules such as phosphatases via a SH2 interaction. Additional studies will focus on these interactions as Jak3 plays a crucial role in disease and health
Illumination of the genomic context and arranges of <i>gcp</i> and <i>ilv</i>-<i>leu</i> operons.
<p>Illumination of the genomic context and arranges of <i>gcp</i> and <i>ilv</i>-<i>leu</i> operons.</p