28 research outputs found

    Three-dimensional X-ray diffraction imaging of process-induced dislocation loops in silicon

    Get PDF
    In the semiconductor industry, wafer handling introduces micro-cracks at the wafer edge and the causal relationship of these cracks to wafer breakage is a difficult task. By way of understanding the wafer breakage process, a series of nano-indents were introduced both into 20 20 mm (100) wafer pieces and into whole wafers as a means of introducing controlled strain. Visualization of the three-dimensional structure of crystal defects has been demonstrated. The silicon samples were then treated by various thermal anneal processes to initiate the formation of dislocation loops around the indents. This article reports the three-dimensional X-ray diffraction imaging and visualization of the structure of these dislocations. A series of X-ray section topographs of both the indents and the dislocation loops were taken at the ANKA Synchrotron, Karlsruhe, Germany. The topographs were recorded on a CCD system combined with a high-resolution scintillator crystal and were measured by repeated cycles of exposure and sample translation along a direction perpendicular to the beam. The resulting images were then rendered into three dimensions utilizing opensource three-dimensional medical tomography algorithms that show the dislocation loops formed. Furthermore this technique allows for the production of a video (avi) file showing the rotation of the rendered topographs around any defined axis. The software also has the capability of splitting the image along a segmentation line and viewing the internal structure of the strain fields

    Crack propagation and fracture in silicon wafers under thermal stress

    Get PDF
    The behaviour of microcracks in silicon during thermal annealing has been studied using in situ X-ray diffraction imaging. Initial cracks are produced with an indenter at the edge of a conventional Si wafer, which was heated under temperature gradients to produce thermal stress. At temperatures where Si is still in the brittle regime, the strain may accumulate if a microcrack is pinned. If a critical value is exceeded either a new or a longer crack will be formed, which results with high probability in wafer breakage. The strain reduces most efficiently by forming (hhl) or (hkl) crack planes of high energy instead of the expected low-energy cleavage planes like {111}. Dangerous cracks, which become active during heat treatment and may shatter the whole wafer, can be identified from diffraction images simply by measuring the geometrical dimensions of the strain-related contrast around the crack tip. Once the plastic regime at higher temperature is reached, strain is reduced by generating dislocation loops and slip bands and no wafer breakage occurs. There is only a small temperature window within which crack propagation is possible during rapid annealing

    Observation of nano-indent induced strain fields and dislocation generation in silicon wafers using micro-raman spectroscopy and white beam x-ray topography

    Get PDF
    In the semiconductor manufacturing industry, wafer handling introduces micro-cracks at the wafer edge. During heat treatment these can produce larger, long-range cracks in the wafer which can cause wafer breakage during manufacture. Two complimentary techniques, micro-Raman spectroscopy (ÎŒRS) and White Beam Synchrotron X-ray Topography (WBSXRT) were employed to study both the micro-cracks and the associated strain fields produced by nano-indentations in Si wafers, which were used as a means of introducing controlled strain in the wafers. It is shown that both the spatial lateral and depth distribution of these long range strain fields are relatively isotropic in nature. The Raman spectra suggest the presence of a region under tensile strain beneath the indents, which can indicate a crack beneath the indent and the data strongly suggests that there exists a minimum critical applied load below which cracking will not initiate

    In Situ Imaging of Dislocation Expansion in FZ-Si Seeds During Temperature Ramp Heating Process

    No full text
    International audienceThe impact of the thermal field in a directional solidification furnace on the generation and propagation of dislocations is investigated in intrinsic floating zone single crystal silicon. Seeds with different crystallographic orientations are wire-cut from mono-crystalline wafers and dislocation sources are solely left at the edges. Thermal annealing experiments are carried out in situ at the European synchrotron radiation facility and the evolution of the silicon crystalline quality is studied by X-ray diffraction imaging technique. At 1073 K, dislocations nucleate only at the edges and their strain field remains local. At higher temperature (1373 K), dislocations propagate throughout the entire width of the seed via the preferential activation of slip planes, related to the crystallographic orientation of the seed. These results confirm the high importance of seed preparation in mono – like silicon growth process. and chemical polishing of all seed surfaces, including their edges, are mandatory to prevent dislocation expansion and multiplication
    corecore