46 research outputs found

    Utilization of TREC and KREC quantification for the monitoring of early T- and B-cell neogenesis in adult patients after allogeneic hematopoietic stem cell transplantation

    Get PDF
    BACKGROUND: After hematopoietic stem cell transplantation (HSCT) T- and B-cell reconstitution from primary lymphoid organs are a prerequisite for an effective early lymphocyte reconstitution and a long-term survival for adult patients suffering from acute leukemia. Here, we asked whether quantification of T cell receptor excision circle, (TREC) and kappa-deleting recombination excision circle (KREC) before and within six month after allogeneic HSCT could be used to measure the thymic and bone marrow outputs in such patients. METHODS: We used a duplex real time PCR assay to quantify the absolute copy counts of TREC and KREC, and correlated the data with absolute cell counts of CD3+CD4+ T-cell and CD19+ B-cell subsets determined by flow cytometry, respectively. RESULTS: By comparing two recently proposed naive T cell subsets, CD31+ naive and CD31- naive T cells, we found a better correlation for the CD31+ subset with TREC level post alloHSCT, in line with the assumption that it contained T cells recently derived from the thymus, indicating that TREC levels reflected real thymic de novo production. Transitional as well as naive B cells highly correlated with KREC levels, which suggested an association of KREC levels with ongoing bone marrow B cell output. CD45RO+ memory T cells and CD27+ memory B cells were significantly less correlated with TREC and KREC recovery, respectively. CONCLUSION: We conclude that simultaneous TREC/ KREC quantification is as a suitable and practicable method to monitor thymic and bone marrow output post alloHSCT in adult patients diagnosed with acute leukemia

    Circulating omentin as a novel biomarker for colorectal cancer risk: Data from the EPIC - Potsdam cohort study

    Get PDF
    Omentin is a novel biomarker shown to exert metabolic, inflammatory and immune-related properties, and thereby could be implicated in the risk of colorectal cancer (CRC). So far, the association between omentin and CRC risk has not been evaluated in prospective cohort studies. We investigated the association between pre-diagnostic plasma omentin concentrations and risk of CRC in a case-cohort comprising 251 incident CRC cases diagnosed over a mean follow-up time of 10.4 years and 2,295 persons who remained free of cancer in the European Prospective Investigation into Cancer and Nutrition-Potsdam study. Hazard ratios as a measure of relative risk (RR) and 95% confidence intervals (CI-s) were computed using a Prentice modified Cox regression. In a model adjusted for established CRC risk factors, age, sex, education, dietary and lifestyle factors, body mass index (BMI) and waist circumference, higher omentin concentrations were associated with a higher CRC risk (RRcontinuously per doubling of omentin concentrations=1.98, 95%CI: 1.45-2.73). Additional adjustment for metabolic biomarkers, including glycated hemoglobin, high-density lipoprotein cholesterol and C-reactive protein, did not alter the results. In stratified analyses, the positive association between omentin and CRC risk was retained in participants with BMI< 30 (RRcontinuously per doubling of omentin concentrations=2.26; 95%CI: 1.57-3.27), whereas among participants with BMI{greater than or equal to} 30 no association was revealed (RRcontinuously per doubling of omentin concentrations =1.07; 95%CI: 0.63-1.83; Pinteraction= 0.005). These novel findings provide the first lines of evidence for an independent association between pre-diagnostic omentin concentrations and CRC risk and suggest a potential interaction with the adiposity state of the individual

    Association of the human gut microbiota with vascular stiffness

    Get PDF
    Gut microbiota metabolites have been mechanistically linked to inflammatory pathway activation and atherosclerosis, which are major causes of vascular stiffness (VS). Aiming to investigate if the gut microbiome might be involved in VS development, we performed a cross-sectional study (n = 3,087), nested within the population-based European Prospective Investigations into Cancer and Nutrition (EPIC) Potsdam. We investigated the correlation of the gut microbiota (alpha diversity and taxa abundance) with 3 vascular stiffness measures: carotid-femoral (PWV), aortic augmentation index (AIX) and ankle-brachial index (ABI). Shannon index was not significantly associated with VS but the number of observed Amplicon Sequence Variants (ASV) was positively associated with PWV and AIX. We found a total of 19 ASVs significantly associated with at least one VS measure in multivariable-adjusted models. One ASV (classified as Sutterella wadsworthensis) was associated with 2 VS measures, AIX (- 0.11 ± 0.04) and PWV (-0.14 ± 0.03). Other examples of ASVs associated with VS were Collinsella aerofaciens, previously reported to be affected by diet and Bacteroides uniformis, commercially available as probiotics. In conclusion, our study suggests a potential role of individual components of the gut microbiota in the aetiology of VS

    Skin tolerant inactivation of multiresistant pathogens using far-UVC LEDs

    Get PDF
    Multiresistant pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) cause serious postoperative infections. A skin tolerant far-UVC (< 240 nm) irradiation system for their inactivation is presented here. It uses UVC LEDs in combination with a spectral filter and provides a peak wavelength of 233 nm, with a full width at half maximum of 12 nm, and an irradiance of 44 µW/cm2. MRSA bacteria in different concentrations on blood agar plates were inactivated with irradiation doses in the range of 15–40 mJ/cm2. Porcine skin irradiated with a dose of 40 mJ/cm2 at 233 nm showed only 3.7% CPD and 2.3% 6-4PP DNA damage. Corresponding irradiation at 254 nm caused 11–14 times higher damage. Thus, the skin damage caused by the disinfectant doses is so small that it can be expected to be compensated by the skin's natural repair mechanisms. LED-based far-UVC lamps could therefore soon be used in everyday clinical practice to eradicate multiresistant pathogens directly on humans

    Paired donor and recipient immunophenotyping in allogeneic hematopoietic stem cell transplantation: a cellular network approach

    Get PDF
    Success and complications of allogeneic hematopoietic stem cell transplantation (alloHSCT) are closely connected to the transferred graft and immune reconstitution post alloHSCT. Due to the variety of immune cells and their distinct roles, a broad evaluation of the immune cellular network is warranted in mobilization and reconstitution studies in alloHSCT. Here, we propose a comprehensive phenotypic analysis of 26 immune cell subsets with multicolor flow cytometry from only 100µl whole blood per time point. Using this approach, we provide an extensive longitudinal analysis of almost 200 time points from 21 donor-recipient pairs. We observe a broad mobilization of innate and adaptive immune cell subsets after granulocyte-colony stimulating factor (G-CSF) treatment of healthy donors. Our data suggest that the relative quantitative immune cell subset composition in recipients approaches that of healthy donors from day +180 post alloHSCT onwards. Correlation of donor and recipient cell counts reveals distinct association patterns for different immune cell subsets and hierarchical clustering of recipient cell counts identifies distinct reconstitution groups in the first month after transplantation. We suggest our comprehensive immune subset analysis as a feasible and time efficient approach for a broad immune assessment for future clinical studies in the context of alloHSCT. This comprehensive cell composition assessment can be a critical step towards personalized graft composition strategies and individualized therapy management in areas such as GvHD prophylaxis in the highly complex immunological setting of alloHSCT

    Arginine catabolism metabolites and atrial fibrillation or heart failure risk: 2 case-control studies within the Prevención con Dieta Mediterránea (PREDIMED) trial

    Get PDF
    Background Arginine-derived metabolites are involved in oxidative and inflammatory processes related to endothelial functions and cardiovascular risks. Objectives We prospectively examined the associations of arginine catabolism metabolites with the risks of atrial fibrillation (AF) or heart failure (HF), and evaluated the potential modifications of these associations through Mediterranean diet (MedDiet) interventions in a large, primary-prevention trial. Methods Two nested, matched, case-control studies were designed within the Prevención con Dieta Mediterránea (PREDIMED) trial. We selected 509 incident cases and 547 matched controls for the AF case-control study and 326 cases and 402 matched controls for the HF case-control study using incidence density sampling. Fasting blood samples were collected at baseline and arginine catabolism metabolites were measured using LC-tandem MS. Multivariable conditional logistic regression models were applied to test the associations between the metabolites and incident AF or HF. Interactions between metabolites and intervention groups (MedDiet groups compared with control group) were analyzed with the likelihood ratio test. Results Inverse association with incident AF was observed for arginine (OR per 1 SD, 0.83; 95% CI: 0.73–0.94), whereas a positive association was found for N1-acetylspermidine (OR for Q4 compared with Q1 1.58; 95% CI: 1.13–2.25). For HF, inverse associations were found for arginine (OR per 1 SD, 0.82; 95% CI: 0.69–0.97) and homoarginine (OR per 1 SD, 0.81; 95% CI: 0.68–0.96), and positive associations were found for the asymmetric dimethylarginine (ADMA) and symmetric dimethlyarginine (SDMA) ratio (OR per 1 SD, 1.19; 95% CI: 1.02–1.41), N1-acetylspermidine (OR per 1 SD, 1.34; 95% CI: 1.12–1.60), and diacetylspermine (OR per 1 SD, 1.20; 95% CI: 1.02–1.41). In the stratified analysis according to the dietary intervention, the lower HF risk associated with arginine was restricted to participants in the MedDiet groups (P-interaction = 0.044). Conclusions Our results suggest that arginine catabolism metabolites could be involved in AF and HF. Interventions with the MedDiet may contribute to strengthen the inverse association between arginine and the risk of HF. This trial was registered at controlled-trials.com as ISRCTN35739639

    Replication of fifteen loci involved in human plasma protein N-glycosylation in 4,802 samples from four cohorts

    Get PDF
    Human protein glycosylation is a complex process, and its in vivo regulation is poorly understood. Changes in glycosylation patterns are associated with many human diseases and conditions. Understanding the biological determinants of protein glycome provides a basis for future diagnostic and therapeutic applications. Genome-wide association studies (GWAS) allow to study biology via a hypothesis-free search of loci and genetic variants associated with a trait of interest. Sixteen loci were identified by three previous GWAS of human plasma proteome N-glycosylation. However, the possibility that some of these loci are false positives needs to be eliminated by replication studies, which have been limited so far. Here, we use the largest set of samples so far (4,802 individuals) to replicate the previously identified loci. For all but one locus, the expected replication power exceeded 95%. Of the sixteen loci reported previously, fifteen were replicated in our study. For the remaining locus (near the KREMEN1 gene) the replication power was low, and hence replication results were inconclusive. The very high replication rate highlights the general robustness of the GWAS findings as well as the high standards adopted by the community that studies genetic regulation of protein glycosylation. The fifteen replicated loci present a good target for further functional studies. Among these, eight genes encode glycosyltransferases: MGAT5, B3GAT1, FUT8, FUT6, ST6GAL1, B4GALT1, ST3GAL4, and MGAT3. The remaining seven loci offer starting points for further functional follow-up investigation into molecules and mechanisms that regulate human protein N-glycosylation in vivo

    Plasma lipidome and risk of atrial fibrillation: results from the PREDIMED trial

    Get PDF
    The potential role of the lipidome in atrial fibrillation (AF) development is still widely unknown. We aimed to assess the association between lipidome profiles of the Prevención con Dieta Mediterránea (PREDIMED) trial participants and incidence of AF. We conducted a nested case-control study (512 incident centrally adjudicated AF cases and 735 controls matched by age, sex, and center). Baseline plasma lipids were profiled using a Nexera X2 U-HPLC system coupled to an Exactive Plus orbitrap mass spectrometer. We estimated the association between 216 individual lipids and AF using multivariable conditional logistic regression and adjusted the p values for multiple testing. We also examined the joint association of lipid clusters with AF incidence. Hitherto, we estimated the lipidomics network, used machine learning to select important network-clusters and AF-predictive lipid patterns, and summarized the joint association of these lipid patterns weighted scores. Finally, we addressed the possible interaction by the randomized dietary intervention.Forty-one individual lipids were associated with AF at the nominal level (p < 0.05), but no longer after adjustment for multiple-testing. However, the network-based score identified with a robust data-driven lipid network showed a multivariable-adjusted ORper+1SD of 1.32 (95% confidence interval: 1.16-1.51; p < 0.001). The score included PC plasmalogens and PE plasmalogens, palmitoyl-EA, cholesterol, CE 16:0, PC 36:4;O, and TG 53:3. No interaction with the dietary intervention was found. A multilipid score, primarily made up of plasmalogens, was associated with an increased risk of AF. Future studies are needed to get further insights into the lipidome role on AF.Current Controlled Trials number, ISRCTN35739639

    Single-cell clonal tracking of persistent T-cells in allogeneic hematopoietic stem cell transplantation

    Get PDF
    The critical balance between intended and adverse effects in allogeneic hematopoietic stem cell transplantation (alloHSCT) depends on the fate of individual donor T-cells. To this end, we tracked αβT-cell clonotypes during stem cell mobilization treatment with granulocyte-colony stimulating factor (G-CSF) in healthy donors and for six months during immune reconstitution after transfer to transplant recipients. More than 250 αβT-cell clonotypes were tracked from donor to recipient. These clonotypes consisted almost exclusively of CD8+ effector memory T cells (CD8TEM), which exhibited a different transcriptional signature with enhanced effector and cytotoxic functions compared to other CD8TEM. Importantly, these distinct and persisting clonotypes could already be delineated in the donor. We confirmed these phenotypes on the protein level and their potential for selection from the graft. Thus, we identified a transcriptional signature associated with persistence and expansion of donor T-cell clonotypes after alloHSCT that may be exploited for personalized graft manipulation strategies in future studies

    Characterizing blood metabolomics profiles associated with self-reported food intakes in female twins

    Get PDF
    Using dietary biomarkers in nutritional epidemiological studies may better capture exposure and improve the level at which diet-disease associations can be established and explored. Here, we aimed to identify and evaluate reproducibility of novel biomarkers of reported habitual food intake using targeted and non-targeted metabolomic blood profiling in a large twin cohort. Reported intakes of 71 food groups, determined by FFQ, were assessed against 601 fasting blood metabolites in over 3500 adult female twins from the TwinsUK cohort. For each metabolite, linear regression analysis was undertaken in the discovery group (excluding MZ twin pairs discordant [≥1 SD apart] for food group intake) with each food group as a predictor adjusting for age, batch effects, BMI, family relatedness and multiple testing (1.17x10-6 = 0.05/[71 food groups x 601 detected metabolites]). Significant results were then replicated (non-targeted: P<0.05; targeted: same direction) in the MZ discordant twin group and results from both analyses meta-analyzed. We identified and replicated 180 significant associations with 39 food groups (P<1.17x10-6), overall consisting of 106 different metabolites (74 known and 32 unknown), including 73 novel associations. In particular we identified trans-4-hydroxyproline as a potential marker of red meat intake (0.075[0.009]; P = 1.08x10-17), ergothioneine as a marker of mushroom consumption (0.181[0.019]; P = 5.93x10-22), and three potential markers of fruit consumption (top association: apple and pears): including metabolites derived from gut bacterial transformation of phenolic compounds, 3-phenylpropionate (0.024[0.004]; P = 1.24x10-8) and indolepropionate (0.026[0.004]; P = 2.39x10-9), and threitol (0.033[0.003]; P = 1.69x10-21). With the largest nutritional metabolomics dataset to date, we have identified 73 novel candidate biomarkers of food intake for potential use in nutritional epidemiological studies. We compiled our findings into the DietMetab database (http://www.twinsuk.ac.uk/dietmetab-data/), an online tool to investigate our top associations
    corecore