69 research outputs found

    Computational advances in gravitational microlensing: a comparison of CPU, GPU, and parallel, large data codes

    Full text link
    To assess how future progress in gravitational microlensing computation at high optical depth will rely on both hardware and software solutions, we compare a direct inverse ray-shooting code implemented on a graphics processing unit (GPU) with both a widely-used hierarchical tree code on a single-core CPU, and a recent implementation of a parallel tree code suitable for a CPU-based cluster supercomputer. We examine the accuracy of the tree codes through comparison with a direct code over a much wider range of parameter space than has been feasible before. We demonstrate that all three codes present comparable accuracy, and choice of approach depends on considerations relating to the scale and nature of the microlensing problem under investigation. On current hardware, there is little difference in the processing speed of the single-core CPU tree code and the GPU direct code, however the recent plateau in single-core CPU speeds means the existing tree code is no longer able to take advantage of Moore's law-like increases in processing speed. Instead, we anticipate a rapid increase in GPU capabilities in the next few years, which is advantageous to the direct code. We suggest that progress in other areas of astrophysical computation may benefit from a transition to GPUs through the use of "brute force" algorithms, rather than attempting to port the current best solution directly to a GPU language -- for certain classes of problems, the simple implementation on GPUs may already be no worse than an optimised single-core CPU version.Comment: 11 pages, 4 figures, accepted for publication in New Astronom

    Distribution of invasive alien Tithonia (Asteraceae) species in eastern and southern Africa and the socio-ecological impacts of T. diversifolia in Zambia

    Get PDF
    Background: Many alien plant species, such as Tithonia diversifolia, T. rotundifolia and T. tubaeformis, have been introduced to areas outside of their natural distribution range to provide benefits, but have subsequently become invasive, threatening biodiversity and agricultural productivity. Objectives: The aim of this study was to determine the current distribution and dates of introduction of invasive Tithonia species in eastern and southern Africa and to document the effects of T. diversifolia on rural livelihoods in Zambia. Method: Roadside surveys, and other sources of information, were used to determine the distribution of invasive Tithonia species in eastern and southern Africa. Household interviews were conducted to gauge perceptions and understand the impacts of T. diversifolia on local livelihoods in Zambia’s Copperbelt province. Results: Tithonia diversifolia is widespread in Uganda, Kenya, Tanzania, South Africa, Malawi and parts of Zambia but less so in Zimbabwe. Tithonia rotundifolia was comparatively uncommon in eastern Africa but common in some southern African countries, while T. tubaeformis was invasive in Swaziland, South Africa, Zambia and possibly also Zimbabwe. According to the majority of respondents in Zambia, T. diversifolia has negative impacts on native vegetation, mobility or access, water availability, crop yields and animal health. Conclusion: Invasive Tithonia species are widespread and spreading throughout much of Africa. Livelihood and biodiversity costs have not been considered by those actively promoting the use and further dissemination of T. diversifolia. We therefore recommend that detailed cost–benefit studies should be undertaken to support informed decisions on the future management of these species

    Fractal Properties of Robust Strange Nonchaotic Attractors in Maps of Two or More Dimensions

    Full text link
    We consider the existence of robust strange nonchaotic attractors (SNA's) in a simple class of quasiperiodically forced systems. Rigorous results are presented demonstrating that the resulting attractors are strange in the sense that their box-counting dimension is N+1 while their information dimension is N. We also show how these properties are manifested in numerical experiments.Comment: 9 pages, 14 figure

    Measurement of the Proton Spin Structure Function g1p with a Pure Hydrogen Target

    Full text link
    A measurement of the proton spin structure function g1p(x,Q^2) in deep-inelastic scattering is presented. The data were taken with the 27.6 GeV longitudinally polarised positron beam at HERA incident on a longitudinally polarised pure hydrogen gas target internal to the storage ring. The kinematic range is 0.021<x<0.85 and 0.8 GeV^2<Q^2<20 GeV^2. The integral Int_{0.021}^{0.85} g1p(x)dx evaluated at Q0^2 of 2.5 GeV^2 is 0.122+/-0.003(stat.)+/-0.010(syst.).Comment: 7 pages, 3 figures, 1 table, RevTeX late

    Observation of a Coherence Length Effect in Exclusive Rho^0 Electroproduction

    Get PDF
    Exclusive incoherent electroproduction of the rho^0(770) meson from 1H, 2H, 3He, and 14N targets has been studied by the HERMES experiment at squared four-momentum transfer Q**2>0.4 GeV**2 and positron energy loss nu from 9 to 20 GeV. The ratio of the 14N to 1H cross sections per nucleon, known as the nuclear transparency, was found to decrease with increasing coherence length of quark-antiquark fluctuations of the virtual photon. The data provide clear evidence of the interaction of the quark- antiquark fluctuations with the nuclear medium.Comment: RevTeX, 5 pages, 3 figure

    Double-Spin Asymmetry in the Cross Section for Exclusive rho^0 Production in Lepton-Proton Scattering

    Get PDF
    Evidence for a positive longitudinal double-spin asymmetry = 0.24 +-0.11 (stat) +-0.02 (syst) in the cross section for exclusive diffractive rho^0(770) vector meson production in polarised lepton-proton scattering was observed by the HERMES experiment. The longitudinally polarised 27.56 GeV HERA positron beam was scattered off a longitudinally polarised pure hydrogen gas target. The average invariant mass of the photon-proton system has a value of = 4.9 GeV, while the average negative squared four-momentum of the virtual photon is = 1.7 GeV^2. The ratio of the present result to the corresponding spin asymmetry in inclusive deep-inelastic scattering is in agreement with an early theoretical prediction based on the generalised vector meson dominance model.Comment: 10 pages, 4 embedded figures, LaTe

    Flavor Decomposition of the Polarized Quark Distributions in the Nucleon from Inclusive and Semi-inclusive Deep-inelastic Scattering

    Full text link
    Spin asymmetries of semi-inclusive cross sections for the production of positively and negatively charged hadrons have been measured in deep-inelastic scattering of polarized positrons on polarized hydrogen and 3He targets, in the kinematic range 0.023<x<0.6 and 1 GeV^2<Q^2<10 GeV^2. Polarized quark distributions are extracted as a function of x for up $(u+u_bar) and down (d+d_bar) flavors. The up quark polarization is positive and the down quark polarization is negative in the measured range. The polarization of the sea is compatible with zero. The first moments of the polarized quark distributions are presented. The isospin non-singlet combination Delta_q_3 is consistent with the prediction based on the Bjorken sum rule. The moments of the polarized quark distributions are compared to predictions based on SU(3)_f flavor symmetry and to a prediction from lattice QCD.Comment: 14 pages, 6 figures (eps format), 10 tables in Latex New version contains tables of asymmetries and correlation matri

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Erratum to: "Nuclear Effects on R=\sigma_L/\sigma_T in Deep-Inelastic Scattering" Phys.Lett. B475(2000)386

    Get PDF
    This erratum revokes the main conclusion of a Letter that reported measurements of cross sections for deep-inelastic scattering (DIS) of leptons on 3^3He and 14^{14}N targets, expressed as ratios of σA/σD\sigma_A / \sigma_D to the cross section on the deuterium target.Comment: 3 pages, 1 figur

    Search for the Chiral Magnetic Effect in Au+Au collisions at sNN=27\sqrt{s_{_{\rm{NN}}}}=27 GeV with the STAR forward Event Plane Detectors

    Full text link
    A decisive experimental test of the Chiral Magnetic Effect (CME) is considered one of the major scientific goals at the Relativistic Heavy-Ion Collider (RHIC) towards understanding the nontrivial topological fluctuations of the Quantum Chromodynamics vacuum. In heavy-ion collisions, the CME is expected to result in a charge separation phenomenon across the reaction plane, whose strength could be strongly energy dependent. The previous CME searches have been focused on top RHIC energy collisions. In this Letter, we present a low energy search for the CME in Au+Au collisions at sNN=27\sqrt{s_{_{\rm{NN}}}}=27 GeV. We measure elliptic flow scaled charge-dependent correlators relative to the event planes that are defined at both mid-rapidity η<1.0|\eta|<1.0 and at forward rapidity 2.1<η<5.12.1 < |\eta|<5.1. We compare the results based on the directed flow plane (Ψ1\Psi_1) at forward rapidity and the elliptic flow plane (Ψ2\Psi_2) at both central and forward rapidity. The CME scenario is expected to result in a larger correlation relative to Ψ1\Psi_1 than to Ψ2\Psi_2, while a flow driven background scenario would lead to a consistent result for both event planes[1,2]. In 10-50\% centrality, results using three different event planes are found to be consistent within experimental uncertainties, suggesting a flow driven background scenario dominating the measurement. We obtain an upper limit on the deviation from a flow driven background scenario at the 95\% confidence level. This work opens up a possible road map towards future CME search with the high statistics data from the RHIC Beam Energy Scan Phase-II.Comment: main: 8 pages, 5 figures; supplementary material: 2 pages, 1 figur
    corecore