33 research outputs found

    Design, construction and commissioning of the Braunschweig Icing Wind Tunnel

    Get PDF
    Beyond its physical importance in both fundamental and climate research, atmospheric icing is considered as a severe operational condition in many engineering applications like aviation, electrical power transmission and wind-energy production. To reproduce such icing conditions in a laboratory environment, icing wind tunnels are frequently used. In this paper, a comprehensive overview on the design, construction and commissioning of the Braunschweig Icing Wind Tunnel is given. The tunnel features a test section of 0.5 m  ×  0.5 m with peak velocities of up to 40 m s−1. The static air temperature ranges from −25 to +30 °C. Supercooled droplet icing with liquid water contents up to 3 g m−3 can be reproduced. The unique aspect of this facility is the combination of an icing tunnel with a cloud chamber system for making ice particles. These ice particles are more realistic in shape and density than those usually used for mixed phase and ice crystal icing experiments. Ice water contents up to 20 g m−3 can be generated. We further show how current state-of-the-art measurement techniques for particle sizing are performed on ice particles. The data are compared to those of in-flight measurements in mesoscale convective cloud systems in tropical regions. Finally, some applications of the icing wind tunnel are presented

    Validation of the Aeolus L2B wind product with airborne wind lidar measurements in the polar North Atlantic region and in the tropics

    Get PDF
    During the first 3 years of the European Space Agency's Aeolus mission, the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt, DLR) performed four airborne campaigns deploying two different Doppler wind lidars (DWL) on board the DLR Falcon aircraft, aiming to validate the quality of the recent Aeolus Level 2B (L2B) wind data product (processor baseline 11 and 12). The first two campaigns, WindVal III (November–December 2018) and AVATAR-E (Aeolus Validation Through Airborne Lidars in Europe, May and June 2019), were conducted in Europe and provided first insights into the data quality at the beginning of the mission phase. The two later campaigns, AVATAR-I (Aeolus Validation Through Airborne Lidars in Iceland) and AVATAR-T (Aeolus Validation Through Airborne Lidars in the Tropics), were performed in regions of particular interest for the Aeolus validation: AVATAR-I was conducted from Keflavik, Iceland, between 9 September and 1 October 2019 to sample the high wind speeds in the vicinity of the polar jet stream; AVATAR-T was carried out from Sal, Cape Verde, between 6 and 28 September 2021 to measure winds in the Saharan dust-laden African easterly jet. Altogether, 10 Aeolus underflights were performed during AVATAR-I and 11 underflights during AVATAR-T, covering about 8000 and 11 000 km along the Aeolus measurement track, respectively. Based on these collocated measurements, statistical comparisons of Aeolus data with the reference lidar (2 µm DWL) as well as with in situ measurements by the Falcon were performed to determine the systematic and random errors of Rayleigh-clear and Mie-cloudy winds that are contained in the Aeolus L2B product. It is demonstrated that the systematic error almost fulfills the mission requirement of being below 0.7 m s−1 for both Rayleigh-clear and Mie-cloudy winds. The random error is shown to vary between 5.5 and 7.1 m s−1 for Rayleigh-clear winds and is thus larger than specified (2.5 m s−1), whereas it is close to the specifications for Mie-cloudy winds (2.7 to 2.9 m s−1). In addition, the dependency of the systematic and random errors on the actual wind speed, the geolocation, the scattering ratio, and the time difference between 2 µm DWL observation and satellite overflight is investigated and discussed. Thus, this work contributes to the characterization of the Aeolus data quality in different meteorological situations and allows one to investigate wind retrieval algorithm improvements for reprocessed Aeolus data sets.</p

    ESA's wind Lidar mission ADM-AEOLUS; on-going scientific activities related to calibration, retrieval and instrument operation

    Get PDF
    The Earth Explorer Atmospheric Dynamics Mission (ADM-Aeolus) of ESA will be the first-ever satellite to provide global observations of wind profiles from space. Its single payload, namely the Atmospheric Laser Doppler Instrument (ALADIN) is a directdetection high spectral resolution Doppler Wind Lidar (DWL), operating at 355 nm, with a fringe-imaging receiver (analysing aerosol and cloud backscatter) and a double-edge receiver (analysing molecular backscatter). In order to meet the stringent mission requirements on wind retrieval, ESA is conducting various science support activities for the consolidation of the on-ground data processing, calibration and sampling strategies. Results from a recent laboratory experiment to study Rayleigh-Brillouin scattering and improve the characterisation of the molecular lidar backscatter signal detected by the ALADIN double-edge Fabry- Perot receiver will be presented in this paper. The experiment produced the most accurate ever-measured Rayleigh-Brillouin scattering profiles for a range of temperature, pressure and gases, representative of Earth’s atmosphere. The measurements were used to validate the Tenti S6 model, which is implemented in the ADM-Aeolus ground processor. First results from the on-going Vertical Aeolus Measurement Positioning (VAMP) study will be also reported. This second study aims at the optimisation of the ADM-Aeolus vertical sampling in order to maximise the information content of the retrieved winds, taking into account the atmospheric dynamical and optical heterogeneity. The impact of the Aeolus wind profiles on Numerical Weather Prediction (NWP) and stratospheric circulation modelling for the different vertical sampling strategies is also being estimated

    Investigating an indirect aviation effect on mid-latitude cirrus clouds – linking lidar-derived optical properties to in situ measurements

    Get PDF
    Aviation has a large impact on the Earth's atmosphere and climate by various processes. Line-shaped contrails and contrail cirrus clouds lead to changes in the natural cirrus cloud cover and have a major contribution to the effective radiative forcing from aviation. In addition, aviation-induced aerosols might also change the microphysical properties and optical properties of naturally formed cirrus clouds. Latter aerosol–cloud interactions show large differences in the resulting effective radiative forcing, and our understanding on how aviation-induced aerosols affect cirrus cloud properties is still poor. Up to now, observations of this aviation-induced aerosol effect have been rare. In this study, we use combined airborne lidar and in situ ice cloud measurements to investigate differences in the microphysical and optical properties of naturally formed cirrus clouds, which formed in regions that are highly affected by aviation-induced aerosol emissions and, of those, which formed in regions rather unaffected by aviation. Urbanek et al. (2018) showed that those cirrus clouds, which are more affected by aviation-induced soot emission, are characterized by larger values of the particle linear depolarization ratio (PLDR). In this follow-on study we relate collocated lidar measurements performed aboard HALO during the ML-CIRRUS mission of the particle linear depolarization ratio with in situ cloud probe measurements of the number concentration and effective diameter of the ice particles. In situ measurements for both cloud types (high-PLDR-mode – aviation-affected – and low-PLDR-mode – pristine – cirrus) can be reliably compared in a temperature range between 210 and 215 K. Within this temperature range we find that high-PLDR-mode cirrus clouds tend to show larger effective ice particle diameters with a median value of 61.4 compared to 50.7 µm for low-PLDR-mode pristine cirrus clouds. Larger effective ice particles in aviation-influenced (high-PLDR-mode) cirrus are connected to lower ice particle number concentration with a median value of 0.05 compared to 0.11 cm−3 (low-PLDR-mode), which evolved in more pristine regions with only little impact from aviation. We suspect that a suppression of homogeneous ice formation by the heterogeneously freezing soot aerosol particles included in the areas affected by air traffic is the cause of the reduced ice crystal concentrations.</p

    Aircraft-based observations of isoprene-epoxydiol-derived secondary organic aerosol (IEPOX-SOA) in the tropical upper troposphere over the Amazon region

    Get PDF
    During the ACRIDICON-CHUVA field project (September-October 2014;based in Manaus, Brazil) aircraft-based in situ measurements of aerosol chemical composition were conducted in the tropical troposphere over the Amazon using the High Altitude and Long Range Research Aircraft (HALO), covering altitudes from the boundary layer (BL) height up to 14.4 km. The submicron non-refractory aerosol was characterized by flash-vaporization/electron impact-ionization aerosol particle mass spectrometry. The results show that significant secondary organic aerosol (SOA) formation by isoprene oxidation products occurs in the upper troposphere (UT), leading to increased organic aerosol mass concentrations above 10 km altitude. The median organic mass concentrations in the UT above 10 km range between 1.0 and 2.5 mu g m(-3) (referring to standard temperature and pressure;STP) with interquartile ranges of 0.6 to 3.2 mu g m(-3) (STP), representing 78 % of the total submicron non-refractory aerosol particle mass. The presence of isoprene-epoxydiol-derived secondary organic aerosol (IEPOX-SOA) was confirmed by marker peaks in the mass spectra. We estimate the contribution of IEPOX-SOA to the total organic aerosol in the UT to be about 20 %. After isoprene emission from vegetation, oxidation processes occur at low altitudes and/or during transport to higher altitudes, which may lead to the formation of IEPOX (one oxidation product of isoprene). Reactive uptake or condensation of IEPOX on preexisting particles leads to IEPDX-SOA formation and subsequently increasing organic mass in the UT. This organic mass increase was accompanied by an increase in the nitrate mass concentrations, most likely due to NOx production by lightning. Analysis of the ion ratio of NO+ to NO2+ indicated that nitrate in the UT exists mainly in the form of organic nitrate. IEPOX-SOA and organic nitrates are coincident with each other, indicating that IEPDX-SOA forms in the UT either on acidic nitrate particles forming organic nitrates derived from IEPDX or on already neutralized organic nitrate aerosol particles

    Cleaner burning aviation fuels can reduce contrail cloudiness

    Get PDF
    Contrail cirrus account for the major share of aviation’s climate impact. Yet, the links between jet fuel composition, contrail microphysics and climate impact remain unresolved. Here we present unique observations from two DLR-NASA aircraft campaigns that measured exhaust and contrail characteristics of an Airbus A320 burning either standard jet fuels or low aromatic sustainable aviation fuel blends. Our results show that soot particles can regulate the number of contrail cirrus ice crystals for current emission levels. We provide experimental evidence that burning low aromatic sustainable aviation fuel can result in a 50 to 70% reduction in soot and ice number concentrations and an increase in ice crystal size. Reduced contrail ice numbers cause less energy deposition in the atmosphere and less warming. Meaningful reductions in aviation’s climate impact could therefore be obtained from the widespread adoptation of low aromatic fuels, and from regulations to lower the maximum aromatic fuel content

    Analytical model for Rayleigh–Brillouin line shapes in air

    Get PDF
    Atmospheric lidar techniques for the measurement of wind, temperature, and optical properties of aerosols as well as nonintrusive measurement techniques for temperature, density, and bulk velocity in gas flows rely on the exact knowledge of the spectral line shape of the scattered laser light on molecules. A mathematically complex, numerical model (Tenti S6 model) is currently the best model for describing these spectra. In this paper an easy processable, alternative analytical model for describing spontaneous Rayleigh–Brillouin spectra in air at atmospheric conditions is introduced. The deviations between the analytical and Tenti S6 models are shown to be smaller than 0.85%

    Airborne Doppler Lidar Investigation of Sea Surface Reflectance at a 355-nm Ultraviolet Wavelength

    Get PDF
    The analysis of the sea surface reflectance for different incidence angles based on observations of an airborne Doppler lidar at an ultraviolet wavelength of 355 nm is described. The results were compared to sea surface reflectance models, including the contribution from whitecaps, specular reflection, and the subsurface volume backscattering. The observations show the expected effect of the wind stress on the sea surface reflectance and allow new insights into the significant contribution from subsurface reflectance for large incidence angles. While most of the observations and model results were obtained for isotropic reflectance, first results on anisotropic reflectance are also provided. The results from this study are relevant to future spaceborne wind lidar instruments, for example, the Atmospheric Dynamics Mission (ADM)-Aeolus, which could use the sea surface reflectance for the calibration of intensity and wind
    corecore