7 research outputs found

    Within-sibship genome-wide association analyses decrease bias in estimates of direct genetic effects

    Get PDF
    Publisher Copyright: © 2022, The Author(s).Estimates from genome-wide association studies (GWAS) of unrelated individuals capture effects of inherited variation (direct effects), demography (population stratification, assortative mating) and relatives (indirect genetic effects). Family-based GWAS designs can control for demographic and indirect genetic effects, but large-scale family datasets have been lacking. We combined data from 178,086 siblings from 19 cohorts to generate population (between-family) and within-sibship (within-family) GWAS estimates for 25 phenotypes. Within-sibship GWAS estimates were smaller than population estimates for height, educational attainment, age at first birth, number of children, cognitive ability, depressive symptoms and smoking. Some differences were observed in downstream SNP heritability, genetic correlations and Mendelian randomization analyses. For example, the within-sibship genetic correlation between educational attainment and body mass index attenuated towards zero. In contrast, analyses of most molecular phenotypes (for example, low-density lipoprotein-cholesterol) were generally consistent. We also found within-sibship evidence of polygenic adaptation on taller height. Here, we illustrate the importance of family-based GWAS data for phenotypes influenced by demographic and indirect genetic effects.Peer reviewe

    Avoiding dynastic, assortative mating, and population stratification biases in Mendelian randomization through within-family analyses

    Get PDF
    Estimates from Mendelian randomization studies of unrelated individuals can be biased due to uncontrolled confounding from familial effects. Here we describe methods for within-family Mendelian randomization analyses and use simulation studies to show that family-based analyses can reduce such biases. We illustrate empirically how familial effects can affect estimates using data from 61,008 siblings from the Nord-TrOndelag Health Study and UK Biobank and replicated our findings using 222,368 siblings from 23andMe. Both Mendelian randomization estimates using unrelated individuals and within family methods reproduced established effects of lower BMI reducing risk of diabetes and high blood pressure. However, while Mendelian randomization estimates from samples of unrelated individuals suggested that taller height and lower BMI increase educational attainment, these effects were strongly attenuated in within-family Mendelian randomization analyses. Our findings indicate the necessity of controlling for population structure and familial effects in Mendelian randomization studies. Family-based study designs have been applied to resolve confounding by population stratification, dynastic effects and assortative mating in genetic association analyses. Here, Brumpton et al. describe theory and simulations for overcoming such biases in Mendelian randomization through within-family studies.Peer reviewe

    Educational attainment, health outcomes and mortality: a within-sibship Mendelian randomization study

    Get PDF
    BACKGROUND: Previous Mendelian randomization (MR) studies using population samples (population MR) have provided evidence for beneficial effects of educational attainment on health outcomes in adulthood. However, estimates from these studies may have been susceptible to bias from population stratification, assortative mating and indirect genetic effects due to unadjusted parental genotypes. MR using genetic association estimates derived from within-sibship models (within-sibship MR) can avoid these potential biases because genetic differences between siblings are due to random segregation at meiosis. METHODS: Applying both population and within-sibship MR, we estimated the effects of genetic liability to educational attainment on body mass index (BMI), cigarette smoking, systolic blood pressure (SBP) and all-cause mortality. MR analyses used individual-level data on 72 932 siblings from UK Biobank and the Norwegian HUNT study, and summary-level data from a within-sibship Genome-wide Association Study including >140 000 individuals. RESULTS: Both population and within-sibship MR estimates provided evidence that educational attainment decreased BMI, cigarette smoking and SBP. Genetic variant-outcome associations attenuated in the within-sibship model, but genetic variant-educational attainment associations also attenuated to a similar extent. Thus, within-sibship and population MR estimates were largely consistent. The within-sibship MR estimate of education on mortality was imprecise but consistent with a putative effect. CONCLUSIONS: These results provide evidence of beneficial individual-level effects of education (or liability to education) on adulthood health, independently of potential demographic and family-level confounders

    Avoiding dynastic, assortative mating, and population stratification biases in Mendelian randomization through within-family analyses.

    Get PDF
    Estimates from Mendelian randomization studies of unrelated individuals can be biased due to uncontrolled confounding from familial effects. Here we describe methods for within-family Mendelian randomization analyses and use simulation studies to show that family-based analyses can reduce such biases. We illustrate empirically how familial effects can affect estimates using data from 61,008 siblings from the Nord-Trøndelag Health Study and UK Biobank and replicated our findings using 222,368 siblings from 23andMe. Both Mendelian randomization estimates using unrelated individuals and within family methods reproduced established effects of lower BMI reducing risk of diabetes and high blood pressure. However, while Mendelian randomization estimates from samples of unrelated individuals suggested that taller height and lower BMI increase educational attainment, these effects were strongly attenuated in within-family Mendelian randomization analyses. Our findings indicate the necessity of controlling for population structure and familial effects in Mendelian randomization studies

    Within-sibship genome-wide association analyses decrease bias in estimates of direct genetic effects

    Get PDF
    Estimates from genome-wide association studies (GWAS) of unrelated individuals capture effects of inherited variation (direct effects), demography (population stratification, assortative mating) and relatives (indirect genetic effects). Family-based GWAS designs can control for demographic and indirect genetic effects, but large-scale family datasets have been lacking. We combined data from 178,086 siblings from 19 cohorts to generate population (between-family) and within-sibship (within-family) GWAS estimates for 25 phenotypes. Within-sibship GWAS estimates were smaller than population estimates for height, educational attainment, age at first birth, number of children, cognitive ability, depressive symptoms and smoking. Some differences were observed in downstream SNP heritability, genetic correlations and Mendelian randomization analyses. For example, the within-sibship genetic correlation between educational attainment and body mass index attenuated towards zero. In contrast, analyses of most molecular phenotypes (for example, low-density lipoprotein-cholesterol) were generally consistent. We also found within-sibship evidence of polygenic adaptation on taller height. Here, we illustrate the importance of family-based GWAS data for phenotypes influenced by demographic and indirect genetic effects

    Avoiding dynastic, assortative mating, and population stratification biases in Mendelian randomization through within-family analyses

    No full text
    Estimates from Mendelian randomization studies of unrelated individuals can be biased due to uncontrolled confounding from familial effects. Here we describe methods for within-family Mendelian randomization analyses and use simulation studies to show that family-based analyses can reduce such biases. We illustrate empirically how familial effects can affect estimates using data from 61,008 siblings from the Nord-Trøndelag Health Study and UK Biobank and replicated our findings using 222,368 siblings from 23andMe. Both Mendelian randomization estimates using unrelated individuals and within family methods reproduced established effects of lower BMI reducing risk of diabetes and high blood pressure. However, while Mendelian randomization estimates from samples of unrelated individuals suggested that taller height and lower BMI increase educational attainment, these effects were strongly attenuated in within-family Mendelian randomization analyses. Our findings indicate the necessity of controlling for population structure and familial effects in Mendelian randomization studies

    Avoiding dynastic, assortative mating, and population stratification biases in Mendelian randomization through within-family analyses

    No full text
    Estimates from Mendelian randomization studies of unrelated individuals can be biased due to uncontrolled confounding from familial effects. Here we describe methods for within-family Mendelian randomization analyses and use simulation studies to show that family-based analyses can reduce such biases. We illustrate empirically how familial effects can affect estimates using data from 61,008 siblings from the Nord-Trøndelag Health Study and UK Biobank and replicated our findings using 222,368 siblings from 23andMe. Both Mendelian randomization estimates using unrelated individuals and within family methods reproduced established effects of lower BMI reducing risk of diabetes and high blood pressure. However, while Mendelian randomization estimates from samples of unrelated individuals suggested that taller height and lower BMI increase educational attainment, these effects were strongly attenuated in within-family Mendelian randomization analyses. Our findings indicate the necessity of controlling for population structure and familial effects in Mendelian randomization studies
    corecore