353 research outputs found
Recommended from our members
Longitudinal bacterial community dynamics and sodium hypochlorite intervention in a newly built university building
Urbanisation and building advancements have increased microbial growth in indoor environments, altering human interactions with these microorganisms. Restrooms and their sinks harbour diverse bacterial communities, that differ from those found in natural environments, that could have negative implications for human health. Over two and a half years, this study examined the diversity, temporal dynamics, and resilience of bacterial communities in restroom sink P-traps in a newly built university building. Structured into two phases, the first phase consisted of continuous monitoring of bacterial community dynamics for two years (n = 352), while the second phase involved an intervention with sodium hypochlorite (bleach) and subsequent sampling (n = 132). In the first phase, we show that sink communities converge, becoming more compositionally similar to other sinks within the building. Bacterial families such as Rhodocyclaceae and Flavobacteriaceae dominated across the sinks, and others such as Comamonadaceae, Moraxellaceae and Enterbacteriaceae were highly prevalent. When comparing bacterial structure and composition to other sinks located on the university campus, the mean bacterial dissimilarity decreased over time, indicating compositional similarity, particularly with the newer buildings on campus. The second phase demonstrated resilience by the bacterial sink communities. Following bleach treatments, a distinct increase in Acinetobacter was observed. However, by the fourth week after bleach invention, bacterial communities had re-established to levels observed prior to treatment. This study had the unique opportunity to sample a newly built building before occupancy and for the subsequent two and a half years. The findings provide crucial insights into the development and resilience of sink P-trap bacterial communities in restrooms, laying the groundwork for more targeted approaches to disinfection strategies
A comparison of pseudo-continuous arterial spin labelling and dynamic susceptibility contrast MrI with and without contrast agent leakage correction in paediatric brain tumours
OBJECTIVE: To investigate correlations between MRI perfusion metrics measured by dynamic susceptibility contrast and arterial spin labelling in paediatric brain tumours. METHODS: 15 paediatric patients with brain tumours were scanned prospectively using pseudo-continuous arterial spin labelling (ASL) and dynamic susceptibility contrast (DSC-) MRI with a pre-bolus to minimise contrast agent leakage. Cerebral blood flow (CBF) maps were produced using ASL. Cerebral blood volume (CBV) maps with and without contrast agent leakage correction using the Boxerman technique and the leakage parameter, K2, were produced from the DSC data. Correlations between the metrics produced were investigated. RESULTS: Histology resulted in the following diagnoses: pilocytic astrocytoma (n = 7), glioblastoma (n = 1), medulloblastoma (n = 1), rosette-forming glioneuronal tumour of fourth ventricle (n = 1), atypical choroid plexus papilloma (n = 1) and pilomyxoid astrocytoma (n = 1). Three patients had a non-invasive diagnosis of low-grade glioma. DSC CBV maps of T1-enhancing tumours were difficult to interpret without the leakage correction. CBV values obtained with and without leakage correction were significantly different (p < 0.01). A significant positive correlation was observed between ASL CBF and DSC CBV (r = 0.516, p = 0.049) which became stronger when leakage correction was applied (r = 0.728, p = 0.002). K2 values were variable across the group (mean = 0.35, range = −0.49 to 0.64). CONCLUSION: CBV values from DSC obtained with and without leakage correction were significantly different. Large increases in CBV were observed following leakage correction in highly T1-enhancing tumours. DSC and ASL perfusion metrics were found to correlate significantly in a range of paediatric brain tumours. A stronger relationship between DSC and ASL was seen when leakage correction was applied to the DSC data. Leakage correction should be applied when analysing DSC data in enhancing paediatric brain tumours. ADVANCES IN KNOWLEDGE: We have shown that leakage correction should be applied when investigating enhancing paediatric brain tumours using DSC-MRI. A stronger correlation was found between CBF derived from ASL and CBV derived from DSC when a leakage correction was employed
Fat Hypertrophy as a Complication of Fat Transfer for Hemifacial Atrophy
Fat hypertrophy is a less commonly known complication of autologous fat transfer. We present a 32-year-old female with left hemifacial atrophy associated with systemic sclerosis, who was treated with 7 fat transfer procedures to correct the facial asymmetry. A total of 236.5 mL of fat was injected to the hemiface over a 4-year period to achieve good symmetry. A progressively enlarging, painless, soft mass over the left parotid region was noted at 3 months after the final fat transfer procedure. Magnetic resonance imaging showed a markedly enlarged bulk of subcutaneous fat over the left cheek with no evidence of necrosis, edema, or pathologic enhancement. Concurrent weight gain was noted secondary to additional nutritional input. The patient's aesthetic, symptomatic, and functional concerns led to the subsequent removal of 115 mL fat by liposuction. LEVEL OF EVIDENCE: 5
Recommended from our members
Increasing phenological asynchrony between spring green-up and arrival of migratory birds
Consistent with a warming climate, birds are shifting the timing of their migrations, but it remains unclear to what extent these shifts have kept pace with the changing environment. Because bird migration is primarily cued by annually consistent physiological responses to photoperiod, but conditions at their breeding grounds depend on annually variable climate, bird arrival and climate-driven spring events would diverge. We combined satellite and citizen science data to estimate rates of change in phenological interval between spring green-up and migratory arrival for 48 breeding passerine species across North America. Both arrival and green-up changed over time, usually in the same direction (earlier or later). Although birds adjusted their arrival dates, 9 of 48 species did not keep pace with rapidly changing green-up and across all species the interval between arrival and green-up increased by over half a day per year. As green-up became earlier in the east, arrival of eastern breeding species increasingly lagged behind green-up, whereas in the west—where green-up typically became later—birds arrived increasingly earlier relative to green-up. Our results highlight that phenologies of species and trophic levels can shift at different rates, potentially leading to phenological mismatches with negative fitness consequences
Economic-based projections of future land use in the conterminous United States under alternative policy scenarios
Land-use change significantly contributes to biodiversity loss, invasive species spread, changes in biogeochemical cycles, and the loss of ecosystem services. Planning for a sustainable future requires a thorough understanding of expected land use at the fine spatial scales relevant for modeling many ecological processes and at dimensions appropriate for regional or national-level policy making. Our goal was to construct and parameterize an econometric model of land-use change to project future land use to the year 2051 at a fine spatial scale across the conterminous United States under several alternative land-use policy scenarios. We parameterized the econometric model of land-use change with the National Resource Inventory (NRI) 1992 and 1997 land-use data for 844 000 sample points. Land-use transitions were estimated for five land-use classes (cropland, pasture, range, forest, and urban). We predicted land-use change under four scenarios: business-as-usual, afforestation, removal of agricultural subsidies, and increased urban rents. Our results for the business-as-usual scenario showed widespread changes in land use, affecting 36% of the land area of the conterminous United States, with large increases in urban land (79%) and forest (7%), and declines in cropland (\-16%) and pasture (\-13%). Areas with particularly high rates of land-use change included the larger Chicago area, parts of the Pacific Northwest, and the Central Valley of California. However, while land-use change was substantial, differences in results among the four scenarios were relatively minor. The only scenario that was markedly different was the afforestation scenario, which resulted in an increase of forest area that was twice as high as the business-as-usual scenario. Land-use policies can affect trends, but only so much. The basic economic and demographic factors shaping land-use changes in the United States are powerful, and even fairly dramatic policy changes, showed only moderate deviations from the business-as-usual scenario. Given the magnitude of predicted land-use change, any attempts to identify a sustainable future or to predict the effects of climate change will have to take likely land-use changes into account. Econometric models that can simulate land-use change for broad areas with fine resolution are necessary to predict trends in ecosystem service provision and biodiversity persistence. © 2012 by the Ecological Society of America
Spatial distribution of wood volume in brazilian savannas
Here we model and describe the wood volume of Cerrado Sensu Stricto, a highly heterogeneous vegetation type in the Savanna biome, in the state of Minas Gerais, Brazil, integrating forest inventory data with spatial-environmental variables, multivariate regression, and regression kriging. Our study contributes to a better understanding of the factors that affect the spatial distribution of the wood volume of this vegetation type as well as allowing better representation of the spatial heterogeneity of this biome. Wood volume estimates were obtained through regression models using different environmental variables as independent variables. Using the best fitted model, spatial analysis of the residuals was carried out by selecting a semivariogram model for generating an ordinary kriging map, which in turn was used with the fitted regression model in the regression kriging technique. Seasonality of both temperature and precipitation, along with the density of deforestation, explained the variations of wood volume throughout Minas Gerais. The spatial distribution of predicted wood volume of Cerrado Sensu Stricto in Minas Gerais revealed the high variability of this variable (15.32 to 98.38 m3 ha-1) and the decreasing gradient in the southeast-northwest direction914COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESSem informaçã
A Genome-Wide Approach to Discovery of Small RNAs Involved in Regulation of Virulence in Vibrio cholerae
Small RNAs (sRNAs) are becoming increasingly recognized as important regulators in bacteria. To investigate the contribution of sRNA mediated regulation to virulence in Vibrio cholerae, we performed high throughput sequencing of cDNA generated from sRNA transcripts isolated from a strain ectopically expressing ToxT, the major transcriptional regulator within the virulence gene regulon. We compared this data set with ToxT binding sites determined by pulldown and deep sequencing to identify sRNA promoters directly controlled by ToxT. Analysis of the resulting transcripts with ToxT binding sites in cis revealed two sRNAs within the Vibrio Pathogenicity Island. When deletions of these sRNAs were made and the resulting strains were competed against the parental strain in the infant mouse model of V. cholerae colonization, one, TarB, displayed a variable colonization phenotype dependent on its physiological state at the time of inoculation. We identified a target of TarB as the mRNA for the secreted colonization factor, TcpF. We verified negative regulation of TcpF expression by TarB and, using point mutations that disrupted interaction between TarB and tpcF mRNA, showed that loss of this negative regulation was primarily responsible for the colonization phenotype observed in the TarB deletion mutant
Dynamic changes in the epigenomic landscape regulate human organogenesis and link to developmental disorders
How the genome activates or silences transcriptional programmes governs organ formation. Little is known in human embryos undermining our ability to benchmark the fidelity of stem cell differentiation or cell programming, or interpret the pathogenicity of noncoding variation. Here, we study histone modifications across thirteen tissues during human organogenesis. We integrate the data with transcription to build an overview of how the human genome differentially regulates alternative organ fates including by repression. Promoters from nearly 20,000 genes partition into discrete states. Key developmental gene sets are actively repressed outside of the appropriate organ without obvious bivalency. Candidate enhancers, functional in zebrafish, allow imputation of tissue-specific and shared patterns of transcription factor binding. Overlaying more than 700 noncoding mutations from patients with developmental disorders allows correlation to unanticipated target genes. Taken together, the data provide a comprehensive genomic framework for investigating normal and abnormal human development
Ethanol reversal of tolerance to the respiratory depressant effects of morphine
Opioids are the most common drugs associated with unintentional drug overdose. Death results from respiratory depression. Prolonged use of opioids results in the development of tolerance but the degree of tolerance is thought to vary between different effects of the drugs. Many opioid addicts regularly consume alcohol (ethanol), and post-mortem analyses of opioid overdose deaths have revealed an inverse correlation between blood morphine and ethanol levels. In the present study, we determined whether ethanol reduced tolerance to the respiratory depressant effects of opioids. Mice were treated with opioids (morphine, methadone, or buprenorphine) for up to 6 days. Respiration was measured in freely moving animals breathing 5% CO(2) in air in plethysmograph chambers. Antinociception (analgesia) was measured as the latency to remove the tail from a thermal stimulus. Opioid tolerance was assessed by measuring the response to a challenge dose of morphine (10 mg/kg i.p.). Tolerance developed to the respiratory depressant effect of morphine but at a slower rate than tolerance to its antinociceptive effect. A low dose of ethanol (0.3 mg/kg) alone did not depress respiration but in prolonged morphine-treated animals respiratory depression was observed when ethanol was co-administered with the morphine challenge. Ethanol did not alter the brain levels of morphine. In contrast, in methadone- or buprenorphine-treated animals no respiratory depression was observed when ethanol was co-administered along with the morphine challenge. As heroin is converted to morphine in man, selective reversal of morphine tolerance by ethanol may be a contributory factor in heroin overdose deaths
Mycobial community assemblages in sink drains across a university campus
Multiple fungal species, including potential opportunistic pathogens have been previously identified in water systems. Here, we investigated over 250 restroom sink fungal communities across a university campus and evaluated their diversity and core taxa present. Remarkable similarity in mycobial community composition was observed across buildings with Ascomycota consistently dominating. We found a core mycobiome independent of the building sampled, that included Exophiala species, potential opportunistic pathogenic black yeasts. Other prevalent and dominant taxa included Saccharomyces and Fusarium, common built environment fungi. The frequent presence of Malassezia, a common skin commensal, showed the external influence of human activities as a source of fungi to sinks. The study represents a novel exploration of sink P-traps mycobial communities from a public area and highlights their importance as reservoirs of possible pathogenic fungi, as well as emphasizing the relevance of further research in this understudied ecosystem within the built environment
- …