214 research outputs found

    Use of Image Analysis to Predict Milling Extraction Rates of Wheats

    Get PDF
    Image analysis of grain morphological characteristics was examined as a possible means of predicting extraction rates of a wide variety of wheat types. Two elevations of grain were examined and measured for the top view whole grains were used, while for the lateral view grains were sagittally bisected in the plane of the crease. Extraction rate was assessed on laboratory mills and expressed as flour yield. Milling extraction rate correlated with one shape factor with a coefficient of 0.78. Inclusion of a second factor in a stepwise regression increased the correlation coefficient to 0.925. No satisfactory predictor of extraction rate exists at present although some grain traders believe that high grain specific weight indicates good milling quality. Specific weights of the wheats involved in the present study were measured and a significant negative correlation with flour yield, was found

    Estimated climate impact of replacing agriculture as the primary food production system

    Get PDF
    Global agriculture is the second largest contributor to anthropogenic climate change after the burning of fossil fuels. However the potential to mitigate the agricultural climate change contribution is limited and must account for the imperative to supply food for the global population. Advances in microbial biomass cultivation technology have recently opened a pathway to growing substantial amounts of food for humans or livestock on a small fraction of the land presently used for agriculture. Here we investigate the potential climate change impacts of the end of agriculture as the primary human food production system. We find that replacing agricultural primary production with electrically powered microbial primary production before a low-carbon energy transition has been completed could redirect renewable energy away from replacing fossil fuels, potentially leading to higher total CO2 emissions. If deployed after a transition to renewable energy, the technology could alleviate agriculturally driven climate change. These diverging pathways originate from the reversibility of agricultural driven global warming and the irreversibility of fossil-fuel CO2 driven warming. The range of reduced warming from the replacement of agriculture ranges from −0.22 (−0.29 to −0.04) ∘C for shared socioeconomic pathway (SSP)1 −1.9 to −0.85 (−0.99 to −0.39) ∘C for SSP4-6.0. For limited temperature target overshoot scenarios, replacement of agriculture could eliminate or reduce the need for active atmospheric CO2 removal to achieve the necessary peak and decline in globa

    Principles of early human development and germ cell program from conserved model systems

    Get PDF
    Human primordial germ cells (hPGCs), the precursors of sperm and eggs, originate during week 2-3 of early postimplantation development(1). Using in vitro models of hPGC induction(2-4), recent studies suggest striking mechanistic differences in specification of human and mouse PGCs(5). This may partly be due to the divergence in their pluripotency networks, and early postimplantation development(6-8). Since early human embryos are inaccessible for direct studies, we considered alternatives, including porcine embryos that, as in humans, develop as bilaminar embryonic discs. Here we show that porcine PGCs (pPGCs) originate from the posterior pre-primitive streak competent epiblast by sequential upregulation of SOX17 and BLIMP1 in response to WNT and BMP signalling. Together with human and monkey in vitro models simulating peri-gastrulation development, we show conserved principles for epiblast development for competency for PGC fate, followed by initiation of the epigenetic program(9-11), regulated by a balanced SOX17–BLIMP1 gene dosage. Our combinatorial approach using human, porcine and monkey in vivo and in vitro models, provides synthetic insights on early human development

    T. brucei Infection Reduces B Lymphopoiesis in Bone Marrow and Truncates Compensatory Splenic Lymphopoiesis through Transitional B-Cell Apoptosis

    Get PDF
    African trypanosomes of the Trypanosoma brucei species are extracellular protozoan parasites that cause the deadly disease African trypanosomiasis in humans and contribute to the animal counterpart, Nagana. Trypanosome clearance from the bloodstream is mediated by antibodies specific for their Variant Surface Glycoprotein (VSG) coat antigens. However, T. brucei infection induces polyclonal B cell activation, B cell clonal exhaustion, sustained depletion of mature splenic Marginal Zone B (MZB) and Follicular B (FoB) cells, and destruction of the B-cell memory compartment. To determine how trypanosome infection compromises the humoral immune defense system we used a C57BL/6 T. brucei AnTat 1.1 mouse model and multicolor flow cytometry to document B cell development and maturation during infection. Our results show a more than 95% reduction in B cell precursor numbers from the CLP, pre-pro-B, pro-B, pre-B and immature B cell stages in the bone marrow. In the spleen, T. brucei induces extramedullary B lymphopoiesis as evidenced by significant increases in HSC-LMPP, CLP, pre-pro-B, pro-B and pre-B cell populations. However, final B cell maturation is abrogated by infection-induced apoptosis of transitional B cells of both the T1 and T2 populations which is not uniquely dependent on TNF-, Fas-, or prostaglandin-dependent death pathways. Results obtained from ex vivo co-cultures of living bloodstream form trypanosomes and splenocytes demonstrate that trypanosome surface coat-dependent contact with T1/2 B cells triggers their deletion. We conclude that infection-induced and possibly parasite-contact dependent deletion of transitional B cells prevents replenishment of mature B cell compartments during infection thus contributing to a loss of the host's capacity to sustain antibody responses against recurring parasitemic waves

    A Low-Cost GPS GSM/GPRS Telemetry System: Performance in Stationary Field Tests and Preliminary Data on Wild Otters (Lutra lutra)

    Get PDF
    Background: Despite the increasing worldwide use of global positioning system (GPS) telemetry in wildlife research, it has never been tested on any freshwater diving animal or in the peculiar conditions of the riparian habitat, despite this latter being one of the most important habitat types for many animal taxa. Moreover, in most cases, the GPS devices used have been commercial and expensive, limiting their use in low-budget projects. Methodology/Principal Findings: We have developed a low-cost, easily constructed GPS GSM/GPRS (Global System for Mobile Communications/General Packet Radio Service) and examined its performance in stationary tests, by assessing the influence of different habitat types, including the riparian, as well as water submersion and certain climatic and environmental variables on GPS fix-success rate and accuracy. We then tested the GPS on wild diving animals, applying it, for the first time, to an otter species (Lutra lutra). The rate of locations acquired during the stationary tests reached 63.2%, with an average location error of 8.94 m (SD = 8.55). GPS performance in riparian habitats was principally affected by water submersion and secondarily by GPS inclination and position within the riverbed. Temporal and spatial correlations of location estimates accounted for some variation in the data sets. GPS-tagged otters also provided accurate locations and an even higher GPS fix-success rate (68.2%). Conclusions/Significance: Our results suggest that GPS telemetry is reliably applicable to riparian and even divin

    Global Systems-Level Analysis of Hfq and SmpB Deletion Mutants in Salmonella: Implications for Virulence and Global Protein Translation

    Get PDF
    Using sample-matched transcriptomics and proteomics measurements it is now possible to begin to understand the impact of post-transcriptional regulatory programs in Enterobacteria. In bacteria post-transcriptional regulation is mediated by relatively few identified RNA-binding protein factors including CsrA, Hfq and SmpB. A mutation in any one of these three genes, csrA, hfq, and smpB, in Salmonella is attenuated for mouse virulence and unable to survive in macrophages. CsrA has a clearly defined specificity based on binding to a specific mRNA sequence to inhibit translation. However, the proteins regulated by Hfq and SmpB are not as clearly defined. Previous work identified proteins regulated by hfq using purification of the RNA-protein complex with direct sequencing of the bound RNAs and found binding to a surprisingly large number of transcripts. In this report we have used global proteomics to directly identify proteins regulated by Hfq or SmpB by comparing protein abundance in the parent and isogenic hfq or smpB mutant. From these same samples we also prepared RNA for microarray analysis to determine if alteration of protein expression was mediated post-transcriptionally. Samples were analyzed from bacteria grown under four different conditions; two laboratory conditions and two that are thought to mimic the intracellular environment. We show that mutants of hfq and smpB directly or indirectly modulate at least 20% and 4% of all possible Salmonella proteins, respectively, with limited correlation between transcription and protein expression. These proteins represent a broad spectrum of Salmonella proteins required for many biological processes including host cell invasion, motility, central metabolism, LPS biosynthesis, two-component regulatory systems, and fatty acid metabolism. Our results represent one of the first global analyses of post-transcriptional regulons in any organism and suggest that regulation at the translational level is widespread and plays an important role in virulence regulation and environmental adaptation for Salmonella
    • …
    corecore