102 research outputs found

    Genetic variation in South Indian castes: evidence from Y-chromosome, mitochondrial, and autosomal polymorphisms

    Get PDF
    Background: Major population movements, social structure, and caste endogamy have influenced the genetic structure of Indian populations. An understanding of these influences is increasingly important as gene mapping and case-control studies are initiated in South Indian populations. Results: We report new data on 155 individuals from four Tamil caste populations of South India and perform comparative analyses with caste populations from the neighboring state of Andhra Pradesh. Genetic differentiation among Tamil castes is low (R = 0.96% for 45 autosomal short tandem repeat (STR) markers), reflecting a largely common origin. Nonetheless, caste- and continent-specific patterns are evident. For 32 lineage-defining Y-chromosome SNPs, Tamil castes show higher affinity to Europeans than to eastern Asians, and genetic distance estimates to the Europeans are ordered by caste rank. For 32 lineage-defining mitochondrial SNPs and hypervariable sequence (HVS) 1, Tamil castes have higher affinity to eastern Asians than to Europeans. For 45 autosomal STRs, upper and middle rank castes show higher affinity to Europeans than do lower rank castes from either Tamil Nadu or Andhra Pradesh. Local between-caste variation (Tamil Nadu R = 0.96%, Andhra Pradesh R = 0.77%) exceeds the estimate of variation between these geographically separated groups (R = 0.12%). Low, but statistically significant, correlations between caste rank distance and genetic distance are demonstrated for Tamil castes using Y-chromosome, mtDNA, and autosomal data. Conclusion: Genetic data from Y-chromosome, mtDNA, and autosomal STRs are in accord with historical accounts of northwest to southeast population movements in India. The influence of ancient and historical population movements and caste social structure can be detected and replicated in South Indian caste populations from two different geographic regions

    The use of mesh in acute hernia: frequency and outcome in 99 cases

    Get PDF
    Background: Incarceration of inguinal, umbilical and cicatricial hernias is a frequent problem. However, little is known about the relationship between the use of mesh and outcome after surgery. The goal of this study was to describe the relationship between the use of mesh in incarcerated hernia and the clinical outcome. Patients and methods: Correspondence, operation reports and patient files between January 1995 and December 2005 of patients presented at one academic and one teaching hospital in Rotterdam were searched for the following keywords: incarceration, strangulation and hernia. The patient characteristics, clinical presentation, pre-operative findings and clinical course were scored and analysed. Results: A total of 203 patients could be identified: 76 inguinal, 52 umbilical, 39 incisional, 14 epigastric, 14 femoral, five trocar and three spigelian hernias. In the statistical analysis, epigastric, femoral, trocar and spigelian hernias were pooled, due to their small group sizes. One patient was excluded from the analysis because the hernia was not corrected during operation. In total, 99 hernias were repaired using mesh versus 103 primary suture repairs. Twenty-five wound infections were registered (12.3%). One mesh was removed during a reintervention for anastomotic leakage, although no signs of wound infection were present. Nine patients died, none of them due to wound-related problems [one cardiovascular, one ruptured aneurysm, two anastomotic leakage, two sepsis e causa incognita (e.c.i.), three pulmonary complications]. Univariate analysis showed that female patients (PΒ =Β 0.007), adipose patients (PΒ =Β 0.016), patients with an umbilical hernia (PΒ =Β 0.01) and patients who underwent a bowel resection (PΒ =Β 0.015) had a significantly higher rate of wound infections. The type of repair (e.g. primary suture or mesh), use of antibiotic prophylaxis, gender, ASA class and age showed no significant relation with post-operative wound infection. After logistic regression analysis, only bowel resection (PΒ =Β 0.020) showed a significant relation with post-operative wound infection. Conclusions: Wound infection rates are high after the correction of acute hernia, but clinical consequences are relatively low. Mesh correction of an acute hernia seems to be safe and should be considered in every incarcerated hernia

    High-resolution haplotype block structure in the cattle genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Bovine HapMap Consortium has generated assay panels to genotype ~30,000 single nucleotide polymorphisms (SNPs) from 501 animals sampled from 19 worldwide taurine and indicine breeds, plus two outgroup species (Anoa and Water Buffalo). Within the larger set of SNPs we targeted 101 high density regions spanning up to 7.6 Mb with an average density of approximately one SNP per 4 kb, and characterized the linkage disequilibrium (LD) and haplotype block structure within individual breeds and groups of breeds in relation to their geographic origin and use.</p> <p>Results</p> <p>From the 101 targeted high-density regions on bovine chromosomes 6, 14, and 25, between 57 and 95% of the SNPs were informative in the individual breeds. The regions of high LD extend up to ~100 kb and the size of haplotype blocks ranges between 30 bases and 75 kb (10.3 kb average). On the scale from 1–100 kb the extent of LD and haplotype block structure in cattle has high similarity to humans. The estimation of effective population sizes over the previous 10,000 generations conforms to two main events in cattle history: the initiation of cattle domestication (~12,000 years ago), and the intensification of population isolation and current population bottleneck that breeds have experienced worldwide within the last ~700 years. Haplotype block density correlation, block boundary discordances, and haplotype sharing analyses were consistent in revealing unexpected similarities between some beef and dairy breeds, making them non-differentiable. Clustering techniques permitted grouping of breeds into different clades given their similarities and dissimilarities in genetic structure.</p> <p>Conclusion</p> <p>This work presents the first high-resolution analysis of haplotype block structure in worldwide cattle samples. Several novel results were obtained. First, cattle and human share a high similarity in LD and haplotype block structure on the scale of 1–100 kb. Second, unexpected similarities in haplotype block structure between dairy and beef breeds make them non-differentiable. Finally, our findings suggest that ~30,000 uniformly distributed SNPs would be necessary to construct a complete genome LD map in <it>Bos taurus </it>breeds, and ~580,000 SNPs would be necessary to characterize the haplotype block structure across the complete cattle genome.</p

    Whole Genome Sequencing Highlights Genetic Changes Associated with Laboratory Domestication of C. elegans

    Get PDF
    Defining the mutational landscape when individuals of a species grow separately and diverge over many generations can provide insights into trait evolution. A specific example of this involves studying changes associated with domestication where different lines of the same wild stock have been cultivated independently in different standard environments. Whole genome sequence comparison of such lines permits estimation of mutation rates, inference of genes' ancestral states and ancestry of existing strains, and correction of sequencing errors in genome databases. Here we study domestication of the C. elegans Bristol strain as a model, and report the genome sequence of LSJ1 (Bristol), a sibling of the standard C. elegans reference wild type N2 (Bristol). The LSJ1 and N2 lines were cultivated separately from shortly after the Bristol strain was isolated until methods to freeze C. elegans were developed. We find that during this time the two strains have accumulated 1208 genetic differences. We describe phenotypic variation between N2 and LSJ1 in the rate at which embryos develop, the rate of production of eggs, the maturity of eggs at laying, and feeding behavior, all the result of post-isolation changes. We infer the ancestral alleles in the original Bristol isolate and highlight 2038 likely sequencing errors in the original N2 reference genome sequence. Many of these changes modify genome annotation. Our study provides a starting point to further investigate genotype-phenotype association and offers insights into the process of selection as a result of laboratory domestication

    Characterization of the past and current duplication activities in the human 22q11.2 region

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Segmental duplications (SDs) on 22q11.2 (LCR22), serve as substrates for meiotic non-allelic homologous recombination (NAHR) events resulting in several clinically significant genomic disorders.</p> <p>Results</p> <p>To understand the duplication activity leading to the complicated SD structure of this region, we have applied the A-Bruijn graph algorithm to decompose the 22q11.2 SDs to 523 fundamental duplication sequences, termed subunits. Cross-species syntenic analysis of primate genomes demonstrates that many of these LCR22 subunits emerged very recently, especially those implicated in human genomic disorders. Some subunits have expanded more actively than others, and young <it>Alu </it>SINEs, are associated much more frequently with duplicated sequences that have undergone active expansion, confirming their role in mediating recombination events. Many copy number variations (CNVs) exist on 22q11.2, some flanked by SDs. Interestingly, two chromosome breakpoints for 13 CNVs (mean length 65 kb) are located in paralogous subunits, providing direct evidence that SD subunits could contribute to CNV formation. Sequence analysis of PACs or BACs identified extra CNVs, specifically, 10 insertions and 18 deletions within 22q11.2; four were more than 10 kb in size and most contained young <it>AluY</it>s at their breakpoints.</p> <p>Conclusions</p> <p>Our study indicates that <it>AluY</it>s are implicated in the past and current duplication events, and moreover suggests that DNA rearrangements in 22q11.2 genomic disorders perhaps do not occur randomly but involve both actively expanded duplication subunits and <it>Alu </it>elements.</p

    Whole Genome Resequencing Reveals Natural Target Site Preferences of Transposable Elements in Drosophila melanogaster

    Get PDF
    Transposable elements are mobile DNA sequences that integrate into host genomes using diverse mechanisms with varying degrees of target site specificity. While the target site preferences of some engineered transposable elements are well studied, the natural target preferences of most transposable elements are poorly characterized. Using population genomic resequencing data from 166 strains of Drosophila melanogaster, we identified over 8,000 new insertion sites not present in the reference genome sequence that we used to decode the natural target preferences of 22 families of transposable element in this species. We found that terminal inverted repeat transposon and long terminal repeat retrotransposon families present clade-specific target site duplications and target site sequence motifs. Additionally, we found that the sequence motifs at transposable element target sites are always palindromes that extend beyond the target site duplication. Our results demonstrate the utility of population genomics data for high-throughput inference of transposable element targeting preferences in the wild and establish general rules for terminal inverted repeat transposon and long terminal repeat retrotransposon target site selection in eukaryotic genomes

    Nematode and Arthropod Genomes Provide New Insights into the Evolution of Class 2 B1 GPCRs

    Get PDF
    Nematodes and arthropods are the most speciose animal groups and possess Class 2 B1 G-protein coupled receptors (GPCRs). Existing models of invertebrate Class 2 B1 GPCR evolution are mainly centered on Caenorhabditis elegans and Drosophila melanogaster and a few other nematode and arthropod representatives. The present study reevaluates the evolution of metazoan Class 2 B1 GPCRs and orthologues by exploring the receptors in several nematode and arthropod genomes and comparing them to the human receptors. Three novel receptor phylogenetic clusters were identified and designated cluster A, cluster B and PDF-R-related cluster. Clusters A and B were identified in several nematode and arthropod genomes but were absent from D. melanogaster and Culicidae genomes, whereas the majority of the members of the PDF-R-related cluster were from nematodes. Cluster A receptors were nematode and arthropod-specific but shared a conserved gene environment with human receptor loci. Cluster B members were orthologous to human GCGR, PTHR and Secretin members with which they probably shared a common origin. PDF-R and PDF-R related clusters were present in representatives of both nematodes and arthropods. The results of comparative analysis of GPCR evolution and diversity in protostomes confirm previous notions that C. elegans and D. melanogaster genomes are not good representatives of nematode and arthropod phyla. We hypothesize that at least four ancestral Class 2 B1 genes emerged early in the metazoan radiation, which after the protostome-deuterostome split underwent distinct selective pressures that resulted in duplication and deletion events that originated the current Class 2 B1 GPCRs in nematode and arthropod genomes.This work was supported by the Portuguese Foundation for Science and Technology (FCT) project PTDC/BIA-BCM/114395/2009, by the European Regional Development Fund through COMPETE and FCT under the project β€˜β€˜PEst-C/MAR/LA0015/2011.’’ RCF is in receipt of an FCT grant (SFRH/BPD/89811/2012) and JCRC is supported by auxiliary research contract FCT Pluriannual funds attributed to CCMAR. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    A Comprehensive Map of Mobile Element Insertion Polymorphisms in Humans

    Get PDF
    As a consequence of the accumulation of insertion events over evolutionary time, mobile elements now comprise nearly half of the human genome. The Alu, L1, and SVA mobile element families are still duplicating, generating variation between individual genomes. Mobile element insertions (MEI) have been identified as causes for genetic diseases, including hemophilia, neurofibromatosis, and various cancers. Here we present a comprehensive map of 7,380 MEI polymorphisms from the 1000 Genomes Project whole-genome sequencing data of 185 samples in three major populations detected with two detection methods. This catalog enables us to systematically study mutation rates, population segregation, genomic distribution, and functional properties of MEI polymorphisms and to compare MEI to SNP variation from the same individuals. Population allele frequencies of MEI and SNPs are described, broadly, by the same neutral ancestral processes despite vastly different mutation mechanisms and rates, except in coding regions where MEI are virtually absent, presumably due to strong negative selection. A direct comparison of MEI and SNP diversity levels suggests a differential mobile element insertion rate among populations
    • …
    corecore