428 research outputs found
Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes
Hydrogen adsorption on crystalline ropes of carbon single-walled nanotubes (SWNT) was found to exceed 8 wt.%, which is the highest capacity of any carbon material. Hydrogen is first adsorbed on the outer surfaces of the crystalline ropes. At pressures higher than about 40 bar at 80 K, however, a phase transition occurs where there is a separation of the individual SWNTs, and hydrogen is physisorbed on their exposed surfaces. The pressure of this phase transition provides a tube-tube cohesive energy for much of the material of 5 meV/C atom. This small cohesive energy is affected strongly by the quality of crystalline order in the ropes
On the dispersionless Kadomtsev-Petviashvili equation in n+1 dimensions: exact solutions, the Cauchy problem for small initial data and wave breaking
We study the (n+1)-dimensional generalization of the dispersionless
Kadomtsev-Petviashvili (dKP) equation, a universal equation describing the
propagation of weakly nonlinear, quasi one dimensional waves in n+1 dimensions,
and arising in several physical contexts, like acoustics, plasma physics and
hydrodynamics. For n=2, this equation is integrable, and it has been recently
shown to be a prototype model equation in the description of the two
dimensional wave breaking of localized initial data. We construct an exact
solution of the n+1 dimensional model containing an arbitrary function of one
variable, corresponding to its parabolic invariance, describing waves, constant
on their paraboloidal wave front, breaking simultaneously in all points of it.
Then we use such solution to build a uniform approximation of the solution of
the Cauchy problem, for small and localized initial data, showing that such a
small and localized initial data evolving according to the (n+1)-dimensional
dKP equation break, in the long time regime, if and only if n=1,2,3; i.e., in
physical space. Such a wave breaking takes place, generically, in a point of
the paraboloidal wave front, and the analytic aspects of it are given
explicitly in terms of the small initial data.Comment: 20 pages, 10 figures, few formulas adde
On the Theory of Relativistic Strong Plasma Waves
The influence of motion of ions and electron temperature on nonlinear
one-dimensional plasma waves with velocity close to the speed of light in
vacuum is investigated. It is shown that although the wavebreaking field weakly
depends on mass of ions, the nonlinear relativistic wavelength essentially
changes. The nonlinearity leads to the increase of the strong plasma
wavelength, while the motion of ions leads to the decrease of the wavelength.
Both hydrodynamic approach and kinetic one, based on Vlasov-Poisson equations,
are used to investigate the relativistic strong plasma waves in a warm plasma.
The existence of relativistic solitons in a thermal plasma is predicted.Comment: 13 pages, 8 figure
Russia-UK collaboration in paleontology: past, present, and future
There is a long history of collaboration between Russia and the United Kingdom in paleontology. This began, arguably, in 1821, with the seminal work by William Fox-Strangways, who produced a geological map of the area around St Petersburg. Most famously, Roderick Murchison carried out extensive surveying and observations throughout European Russia in 1840 and 1841, and published a major monograph on geology and paleontology of European Russia in 1845. Since then, and continuing today, there have been many fruitful collaborations on Precambrian life, Paleozoic marine organisms, terrestrialization of plants and vertebrates, the Permian–Triassic mass extinction, fossil mammals, human evolution, and conservation paleobiology
Understanding the training and education needs of homecare workers supporting people with dementia and cancer: a systematic review of reviews
Many people with dementia, supported by family carers, prefer to live at home and may rely on homecare support services. People with dementia are also often living with multimorbidities, including cancer. The main risk factor for both cancer and dementia is age and the number of people living with dementia and cancer likely to rise. Upskilling the social care workforce to facilitate more complex care is central to national workforce strategies and challenges. Training and education development must also respond to the key requirements of a homecare workforce experiencing financial, recruitment and retention difficulties. This systematic review of reviews provides an overview of dementia and cancer training and education accessible to the homecare workforce. Findings reveal there is a diverse range of training and education available, with mixed evidence of effectiveness. Key barriers and facilitators to effective training and education are identified in order to inform future training, education and learning development for the homecare workforce supporting people with dementia and cancer
Impact of Vitamin D Supplementation on Arterial Vasomotion, Stiffness and Endothelial Biomarkers in Chronic Kidney Disease Patients
Background: Cardiovascular events are frequent and vascular endothelial function is abnormal in patients with chronic
kidney disease (CKD). We demonstrated endothelial dysfunction with vitamin D deficiency in CKD patients; however the impact of cholecalciferol supplementation on vascular stiffness and vasomotor function, endothelial and bone biomarkers in CKD patients with low 25-hydroxy vitamin D [25(OH)D] is unknown, which this study investigated.
Methods: We assessed non-diabetic patients with CKD stage 3/4, age 17–80 years and serum 25(OH)D ,75 nmol/L. Brachial
artery Flow Mediated Dilation (FMD), Pulse Wave Velocity (PWV), Augmentation Index (AI) and circulating blood biomarkers were evaluated at baseline and at 16 weeks. Oral 300,000 units cholecalciferol was administered at baseline and 8-weeks.
Results: Clinical characteristics of 26 patients were: age 50614 (mean61SD) years, eGFR 41611 ml/min/1.73 m2, males
73%, dyslipidaemia 36%, smokers 23% and hypertensives 87%. At 16-week serum 25(OH)D and calcium increased (43616
to 84629 nmol/L, p,0.001 and 2.3760.09 to 2.4260.09 mmol/L; p = 0.004, respectively) and parathyroid hormone
decreased (10.868.6 to 7.464.4; p = 0.001). FMD improved from 3.163.3% to 6.163.7%, p = 0.001. Endothelial biomarker
concentrations decreased: E-Selectin from 566662123 to 525662058 pg/mL; p = 0.032, ICAM-1, 3.4560.01 to
3.1061.04 ng/mL; p = 0.038 and VCAM-1, 54633 to 42633 ng/mL; p = 0.006. eGFR, BP, PWV, AI, hsCRP, von Willebrand
factor and Fibroblast Growth Factor-23, remained unchanged.
Conclusion: This study demonstrates for the first time improvement of endothelial vasomotor and secretory functions with vitamin D in CKD patients without significant adverse effects on arterial stiffness, serum calcium or FGF-23.
Trial Registration: ClinicalTrials.gov NCT0200571
Out-of-equilibrium states as statistical equilibria of an effective dynamics
We study the formation of coherent structures in a system with long-range
interactions where particles moving on a circle interact through a repulsive
cosine potential. Non equilibrium structures are shown to correspond to
statistical equilibria of an effective dynamics, which is derived using
averaging techniques. This simple behavior might be a prototype of others
observed in more complicated systems with long-range interactions, like
two-dimensional incompressible fluids or self-gravitating systems.Comment: 4 figure
Recommended from our members
Evaluating the structure and magnitude of the ash plume during the initial phase of the 2010 Eyjafjallajökull eruption using lidar observations and NAME simulations
The Eyjafjallajökull volcano in Iceland erupted explosively on 14 April 2010, emitting a plume of ash into the atmosphere. The ash was transported from Iceland toward Europe where mostly cloud-free skies allowed ground-based lidars at Chilbolton in England and Leipzig in Germany to estimate the mass concentration in the ash cloud as it passed overhead. The UK Met Office's Numerical Atmospheric-dispersion Modeling Environment (NAME) has been used to simulate the evolution of the ash cloud from the Eyjafjallajökull volcano during the initial phase of the ash emissions, 14–16 April 2010. NAME captures the timing and sloped structure of the ash layer observed over Leipzig, close to the central axis of the ash cloud. Relatively small errors in the ash cloud position, probably caused by the cumulative effect of errors in the driving meteorology en route, result in a timing error at distances far from the central axis of the ash cloud. Taking the timing error into account, NAME is able to capture the sloped ash layer over the UK. Comparison of the lidar observations and NAME simulations has allowed an estimation of the plume height time series to be made. It is necessary to include in the model input the large variations in plume height in order to accurately predict the ash cloud structure at long range. Quantitative comparison with the mass concentrations at Leipzig and Chilbolton suggest that around 3% of the total emitted mass is transported as far as these sites by small (<100 μm diameter) ash particles
Generalized KdV Equation for Fluid Dynamics and Quantum Algebras
We generalize the non-linear one-dimensional equation of a fluid layer for
any depth and length as an infinite order differential equation for the steady
waves. This equation can be written as a q-differential one, with its general
solution written as a power series expansion with coefficients satisfying a
nonlinear recurrence relation. In the limit of long and shallow water (shallow
channels) we reobtain the well known Korteweg-de-Vries equation together with
its single-soliton solution.Comment: 17 pages, Latex, PACS: 47.20.Ky, 43.25.Rq, 47.35.+i, 03.40.Kf,
43.25.Fe, 02.20.Tw, MSC: 16W30, 17B37, 81R50, 35Q51, 34B15, 34L30, 76E3
- …