209 research outputs found

    Sodium recycling at Europa: what do we learn from the sodium cloud variability ?

    No full text
    International audienceWe study the ejection of sodium atoms from Europa's surface by both magnetospheric ion and electron sputtering and desorption stimulated by UV solar photons. The depletion of the surface by ejection and its enrichment by redeposition of sodium atoms are described. The redistribution of sodium atoms at the surface induced by photo-stimulated desorption from the dayside and by sputtering ejection from the trailing hemisphere cannot explain the observed variation of the Na emission brightness. However, a transient increase of the sputtering rate due to a plasma injection may explain such an increase. The relationship between the sodium surface content and the sodium exosphere are also discussed

    Meridional thermospheric neutral wind at high latitude over a full solar cycle

    Get PDF

    Limb imaging of the Venus O2 visible nightglow with the Venus Monitoring Camera

    Full text link
    We investigated the Venus O2 visible nightglow with imagery from the Venus Monitoring Camera on Venus Express. Drawing from data collected between April 2007 and January 2011, we study the global distribution of this emission, discovered in the late 70s by the Venera 9 and 10 missions. The inferred limb-viewing intensities are on the order of 150 kiloRayleighs at the lower latitudes and seem to drop somewhat towards the poles. The emission is generally stable, although there are episodes when the intensities rise up to 500 kR. We compare a set of Venus Monitoring Camera observations with coincident measurements of the O2 nightglow at 1.27 {\mu}m made with the Visible and Infrared Thermal Imaging Spectrometer, also on Venus Express. From the evidence gathered in this and past works, we suggest a direct correlation between the instantaneous emissions from the two O2 nightglow systems. Possible implications regarding the uncertain origin of the atomic oxygen green line at 557.7 nm are noted.Comment: 7 pages, 3 figure

    Magnetosphere‐Ionosphere‐Thermosphere coupling at Jupiter using a three‐dimensional atmospheric general circulation model

    Get PDF
    Jupiter's upper atmosphere is ∼700 K hotter than predicted based on solar extreme ultraviolet heating alone. The reason for this still remains a mystery and is known as the “energy crisis.” It is thought that the interaction between Jupiter and its dynamic magnetosphere plays a vital role in heating its atmosphere to the observed temperatures. Here, we present a new model of Jupiter's magnetosphere‐ionosphere‐thermosphere‐coupled system where we couple a three‐dimensional atmospheric general circulation model to an axisymmetric magnetosphere model. We find that the model temperatures are on average ∼60 K, with a maximum of ∼200 K, hotter than the model's two‐dimensional predecessor making our high‐latitude temperatures comparable to the lower limit of observations. Stronger meridional winds now transport more heat from the auroral region to the equator increasing the equatorial temperatures. However, despite this increase, the modeled equatorial temperatures are still hundreds of kelvins colder than observed. We use this model as an intermediate step toward a three‐dimensional atmospheric model coupled to a realistic magnetosphere model with zonal and radial variation

    Retrieval of ionospheric profiles from the Mars Express MARSIS experiment data and comparison with radio occultation data

    Get PDF
    Abstract. Since 2005 the Mars Advanced Radar and Ionospheric Sounding experiment (MARSIS) aboard Mars Express has acquired a unique dataset on the ionosphere of Mars made up of ionospheric soundings taken by the instrument working in its active ionospheric sounding (AIS) mode. These soundings play a role similar to those of modern Terrestrial digisondes in the analysis of our planet ionosphere and have allowed us to dramatically improve our knowledge about the Martian ionosphere. This paper describes this kind of data, which are available from the public Planetary Science Archive, and introduces the MAISDAT tool developed by the European Space Agency to analyze and derive the vertical profile of electron density. Comparisons with radio occultation profiles obtained from Mars Express Radio Science instrument are performed to validate the procedure used in this study
    corecore