503 research outputs found

    Simulation study of the inhomogeneous Olami-Feder-Christensen model of earthquakes

    Full text link
    Statistical properties of the inhomogeneous version of the Olami-Feder-Christensen (OFC) model of earthquakes is investigated by numerical simulations. The spatial inhomogeneity is assumed to be dynamical. Critical features found in the original homogeneous OFC model, e.g., the Gutenberg-Richter law and the Omori law are often weakened or suppressed in the presence of inhomogeneity, whereas the characteristic features found in the original homogeneous OFC model, e.g., the near-periodic recurrence of large events and the asperity-like phenomena persist.Comment: Shortened from the first version. To appear in European Physical Journal

    Phase diagram and critical properties within an effective model of QCD: the Nambu-Jona-Lasinio model coupled to the Polyakov loop

    Full text link
    We investigate the phase diagram of the so-called Polyakov--Nambu--Jona-Lasinio model at finite temperature and non-zero chemical potential with three quark flavors. Chiral and deconfinement phase transitions are discussed and the relevant order-like parameters are analyzed. The results are compared with simple thermodynamic expectations and lattice data. We present the phase diagram in the (T,μB)T,\,\mu_B) plane, paying special attention to the critical end point: as the strength of the flavor-mixing interaction becomes weaker, the critical end point moves to low temperatures and can even disappear.Comment: 46 pages, 11 figures, 3 table

    Development Toward a Ground-Based Interferometric Phased Array for Radio Detection of High Energy Neutrinos

    Get PDF
    The in-ice radio interferometric phased array technique for detection of high energy neutrinos looks for Askaryan emission from neutrinos interacting in large volumes of glacial ice, and is being developed as a way to achieve a low energy threshold and a large effective volume at high energies. The technique is based on coherently summing the impulsive Askaryan signal from multiple antennas, which increases the signal-to-noise ratio for weak signals. We report here on measurements and a simulation of thermal noise correlations between nearby antennas, beamforming of impulsive signals, and a measurement of the expected improvement in trigger efficiency through the phased array technique. We also discuss the noise environment observed with an analog phased array at Summit Station, Greenland, a possible site for an interferometric phased array for radio detection of high energy neutrinos.Comment: 13 Pages, 14 Figure

    Accelerator measurements of magnetically-induced radio emission from particle cascades with applications to cosmic-ray air showers

    Get PDF
    For fifty years, cosmic-ray air showers have been detected by their radio emission. We present the first laboratory measurements that validate electrodynamics simulations used in air shower modeling. An experiment at SLAC provides a beam test of radio-frequency (RF) radiation from charged particle cascades in the presence of a magnetic field, a model system of a cosmic-ray air shower. This experiment provides a suite of controlled laboratory measurements to compare to particle-level simulations of RF emission, which are relied upon in ultra-high-energy cosmic-ray air shower detection. We compare simulations to data for intensity, linearity with magnetic field, angular distribution, polarization, and spectral content. In particular, we confirm modern predictions that the magnetically induced emission in a dielectric forms a cone that peaks at the Cherenkov angle and show that the simulations reproduce the data within systematic uncertainties.Comment: 5 pages, 7 figure

    Suggestion of coherent radio reflections from an electron-beam induced particle cascade

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Testbeam experiment 576 at the SLAC National Accelerator Laboratory sought to make the first measurement of coherent radio reflections from the ionization produced in the wake of a high-energy particle shower. The > 10   GeV electron beam at the SLAC End Station A was directed into a large high-density polyethylene target to produce a shower analogous to that produced by an EeV neutrino interaction in ice. Continuous wave radio was transmitted into the target, and receiving antennas monitored for reflection of the transmitted signal from the ionization left in the wake of the shower. We detail the first run of the experiment and report on preliminary hints of a signal consistent with a radio reflection at a statistical significance of 2.36σ

    Challenges in measuring nitrogen isotope signatures in inorganic nitrogen forms: An interlaboratory comparison of three common measurement approaches

    Get PDF
    Rationale Stable isotope approaches are increasingly applied to better understand the cycling of inorganic nitrogen (Ni) forms, key limiting nutrients in terrestrial and aquatic ecosystems. A systematic comparison of the accuracy and precision of the most commonly used methods to analyze δ15N in NO3− and NH4+ and interlaboratory comparison tests to evaluate the comparability of isotope results between laboratories are, however, still lacking. Methods Here, we conducted an interlaboratory comparison involving 10 European laboratories to compare different methods and laboratory performance to measure δ15N in NO3− and NH4+. The approaches tested were (a) microdiffusion (MD), (b) chemical conversion (CM), which transforms Ni to either N2O (CM-N2O) or N2 (CM-N2), and (c) the denitrifier (DN) methods. Results The study showed that standards in their single forms were reasonably replicated by the different methods and laboratories, with laboratories applying CM-N2O performing superior for both NO3− and NH4+, followed by DN. Laboratories using MD significantly underestimated the “true” values due to incomplete recovery and also those using CM-N2 showed issues with isotope fractionation. Most methods and laboratories underestimated the at%15N of Ni of labeled standards in their single forms, but relative errors were within maximal 6% deviation from the real value and therefore acceptable. The results showed further that MD is strongly biased by nonspecificity. The results of the environmental samples were generally highly variable, with standard deviations (SD) of up to ± 8.4‰ for NO3− and ± 32.9‰ for NH4+; SDs within laboratories were found to be considerably lower (on average 3.1‰). The variability could not be connected to any single factor but next to errors due to blank contamination, isotope normalization, and fractionation, and also matrix effects and analytical errors have to be considered

    A connection between star formation activity and cosmic rays in the starburst galaxy M 82

    Full text link
    Although Galactic cosmic rays (protons and nuclei) are widely believed to be dominantly accelerated by the winds and supernovae of massive stars, definitive evidence of this origin remains elusive nearly a century after their discovery [1]. The active regions of starburst galaxies have exceptionally high rates of star formation, and their large size, more than 50 times the diameter of similar Galactic regions, uniquely enables reliable calorimetric measurements of their potentially high cosmic-ray density [2]. The cosmic rays produced in the formation, life, and death of their massive stars are expected to eventually produce diffuse gamma-ray emission via their interactions with interstellar gas and radiation. M 82, the prototype small starburst galaxy, is predicted to be the brightest starburst galaxy in gamma rays [3, 4]. Here we report the detection of >700 GeV gamma rays from M 82. From these data we determine a cosmic-ray density of 250 eV cm-3 in the starburst core of M 82, or about 500 times the average Galactic density. This result strongly supports that cosmic-ray acceleration is tied to star formation activity, and that supernovae and massive-star winds are the dominant accelerators.Comment: 18 pages, 4 figures; published in Nature; Version is prior to Nature's in-house style editing (differences are minimal

    Evidence for long-term Gamma-ray and X-ray variability from the unidentified TeV source HESS J0632+057

    Full text link
    HESS J0632+057 is one of only two unidentified very-high-energy gamma-ray sources which appear to be point-like within experimental resolution. It is possibly associated with the massive Be star MWC 148 and has been suggested to resemble known TeV binary systems like LS I +61 303 or LS 5039. HESS J0632+057 was observed by VERITAS for 31 hours in 2006, 2008 and 2009. During these observations, no significant signal in gamma rays with energies above 1 TeV was detected from the direction of HESS J0632+057. A flux upper limit corresponding to 1.1% of the flux of the Crab Nebula has been derived from the VERITAS data. The non-detection by VERITAS excludes with a probability of 99.993% that HESS J0632+057 is a steady gamma-ray emitter. Contemporaneous X-ray observations with Swift XRT reveal a factor of 1.8+-0.4 higher flux in the 1-10 keV range than earlier X-ray observations of HESS J0632+057. The variability in the gamma-ray and X-ray fluxes supports interpretation of the ob ject as a gamma-ray emitting binary.Comment: 8 pages, 3 figures, Accepted for publication in The Astrophysical Journa

    VERITAS Observations of the BL Lac Object 1ES 1218+304

    Full text link
    The VERITAS collaboration reports the detection of very-high-energy (VHE) gamma-ray emission from the high-frequency-peaked BL Lac object 1ES 1218+304 located at a redshift of z=0.182. A gamma-ray signal was detected with high statistical significance for the observations taken during several months in the 2006-2007 observing season. The photon spectrum between ~160 GeV and ~1.8 TeV is well described by a power law with an index of Gamma = 3.08 +/- 0.34(stat) +/- 0.2(sys). The integral flux above 200 GeV corresponds to ~6% of that of the Crab Nebula. The light curve does not show any evidence for VHE flux variability. Using lower limits on the density of the extragalactic background light (EBL) in the near-IR to mid-IR we are able to limit the range of intrinsic energy spectra for 1ES 1218+304. We show that the intrinsic photon spectrum is harder than a power law with an index of Gamma = 2.32 +/- 0.37. When including constraints from the spectra of 1ES 1101-232 and 1ES 0229+200, the spectrum of 1ES 1218+304 is likely to be harder than Gamma = 1.86 +/- 0.37.Comment: Submitted to Proceedings of "4th Heidelberg International Symposium on High Energy Gamma-Ray Astronomy 2008
    corecore