For fifty years, cosmic-ray air showers have been detected by their radio
emission. We present the first laboratory measurements that validate
electrodynamics simulations used in air shower modeling. An experiment at SLAC
provides a beam test of radio-frequency (RF) radiation from charged particle
cascades in the presence of a magnetic field, a model system of a cosmic-ray
air shower. This experiment provides a suite of controlled laboratory
measurements to compare to particle-level simulations of RF emission, which are
relied upon in ultra-high-energy cosmic-ray air shower detection. We compare
simulations to data for intensity, linearity with magnetic field, angular
distribution, polarization, and spectral content. In particular, we confirm
modern predictions that the magnetically induced emission in a dielectric forms
a cone that peaks at the Cherenkov angle and show that the simulations
reproduce the data within systematic uncertainties.Comment: 5 pages, 7 figure