443 research outputs found
Inflammatory response and clinical course of adult patients with nosocomial bloodstream infections caused by Candida spp.
ABSTRACTCandida spp. are an important cause of nosocomial bloodstream infection (nBSI) and are associated with significant morbidity and mortality. An historical cohort study was performed to evaluate the clinical course of 60 randomly selected adult patients with nBSIs caused by Candida spp. Patients with BSI caused by Candida albicans (n = 38) and non-albicans spp. (n = 22) were compared with 80 patients with Staphylococcus aureus BSI by serial systemic inflammatory response syndrome (SIRS) and APACHE II scores. The patients had a mean age of 52 years, the length of hospital stay before BSI averaged 21 days, and 57% of patients required care in an intensive care unit before BSI. The mean APACHE II score was 17 on the day of BSI, and 63% of BSIs were caused by C. albicans. Antifungal therapy within the first 24 h of onset of BSI was appropriate in 52% of patients. Septic shock occurred in 27% of patients, and severe sepsis in an additional 8%. Overall mortality was 42%, and the 7-day mortality rate was 27%. The inflammatory response and clinical course were similar for patients with BSI caused by C. albicans and non-albicans spp. In univariate analysis, progression to septic shock was correlated with high overall mortality, as was an APACHE II score >25 at the onset of BSI. In multivariate analysis, the APACHE II score at the onset of BSI and a systemic inflammatory response independently predicted overall mortality, but the 7-day mortality rate was only predicted independently by the APACHE II score. Clinical course and mortality in patients with Candida BSI were predicted by systemic inflammatory response and APACHE II score, but not by the infecting species
Systemic inflammatory response syndrome in adult patients with nosocomial bloodstream infections due to enterococci
BACKGROUND: Enterococci are the third leading cause of nosocomial bloodstream infection (BSI). Vancomycin resistant enterococci are common and provide treatment challenges; however questions remain about VRE's pathogenicity and its direct clinical impact. This study analyzed the inflammatory response of Enterococcal BSI, contrasting infections from vancomycin-resistant and vancomycin-susceptible isolates. METHODS: We performed a historical cohort study on 50 adults with enterococcal BSI to evaluate the associated systemic inflammatory response syndrome (SIRS) and mortality. We examined SIRS scores 2 days prior through 14 days after the first positive blood culture. Vancomycin resistant (n = 17) and susceptible infections (n = 33) were compared. Variables significant in univariate analysis were entered into a logistic regression model to determine the affect on mortality. RESULTS: 60% of BSI were caused by E. faecalis and 34% by E. faecium. 34% of the isolates were vancomycin resistant. Mean APACHE II (A2) score on the day of BSI was 16. Appropriate antimicrobials were begun within 24 hours in 52%. Septic shock occurred in 62% and severe sepsis in an additional 18%. Incidence of organ failure was as follows: respiratory 42%, renal 48%, hematologic 44%, hepatic 26%. Crude mortality was 48%. Progression to septic shock was associated with death (OR 14.9, p < .001). There was no difference in A2 scores on days -2, -1 and 0 between the VRE and VSE groups. Maximal SIR (severe sepsis, septic shock or death) was seen on day 2 for VSE BSI vs. day 8 for VRE. No significant difference was noted in the incidence of organ failure, 7-day or overall mortality between the two groups. Univariate analysis revealed that AP2>18 at BSI onset, and respiratory, cardiovascular, renal, hematologic and hepatic failure were associated with death, but time to appropriate therapy >24 hours, age, and infection due to VRE were not. Multivariate analysis revealed that hematologic (OR 8.4, p = .025) and cardiovascular failure (OR 7.5, p = 032) independently predicted death. CONCLUSION: In patients with enterococcal BSI, (1) the incidence of septic shock and organ failure is high, (2) patients with VRE BSI are not more acutely ill prior to infection than those with VSE BSI, and (3) the development of hematologic or cardiovascular failure independently predicts death
Comparison of severity of illness scoring systems for patients with nosocomial bloodstream infection due to Pseudomonas aeruginosa
BACKGROUND: Several acute illness severity scores have been proposed for evaluating patients on admission to intensive care units but these have not been compared for patients with nosocomial bloodstream infection (nBSI). We compared three severity of illness scoring systems for predicting mortality in patients with nBSI due to Pseudomonas aeruginosa. METHODS: We performed a historical cohort study on 63 adults in intensive care units with P. aeruginosa monomicrobial nBSI. RESULTS: The Acute Physiology, Age, Chronic Health Evaluation II (APACHE II), Sequential Organ Failure Assessment (SOFA), and Simplified Acute Physiologic Score (SAPS II), were calculated daily from 2 days prior through 2 days after the first positive blood culture. Calculation of the area under the receiver operating characteristic (ROC) curve confirmed that APACHE II and SAPS II at day -1 and SOFA at day +1 were better predictors of outcome than days -2, 0 and day 2 of BSI. By stepwise logistic regression analysis of these three scoring systems, SAPS II (OR: 13.03, CI95% 2.51–70.49) and APACHE II (OR: 12.51, CI95% 3.12–50.09) on day -1 were the best predictors for mortality. CONCLUSION: SAPS II and APACHE II are more accurate than the SOFA score for predicting mortality in this group of patients at day -1 of BSI
Secular trends of antimicrobial resistance of blood isolates in a newly founded Greek hospital
BACKGROUND: Antimicrobial resistance is one of the most challenging issues in modern medicine. METHODS: We evaluated the secular trends of the relative frequency of blood isolates and of the pattern of their in vitro antimicrobial susceptibility in our hospital during the last four and a half years. RESULTS: Overall, the data regarding the relative frequency of blood isolates in our newly founded hospital do not differ significantly from those of hospitals that are functioning for a much longer period of time. A noteworthy emerging problem is the increasing antimicrobial resistance of Gram-negative bacteria, mainly Acinetobacter baumannii and Klebsiella pneumoniae to various classes of antibiotics. Acinetobacter baumannii isolates showed an increase of resistance to amikacin (p = 0.019), ciprofloxacin (p = 0.001), imipenem (p < 0.001), and piperacillin/tazobactam (p = 0.01) between the first and second period of the study. CONCLUSION: An alarming increase of the antimicrobial resistance of Acinetobacter baumannii isolates has been noted during our study
Biofilm formation at the solid-liquid and air-liquid interfaces by Acinetobacter species
Abstract
Background: The members of the genus Acinetobacter are Gram-negative cocobacilli that are frequently found in
the environment but also in the hospital setting where they have been associated with outbreaks of nosocomial
infections. Among them, Acinetobacter baumannii has emerged as the most common pathogenic species involved
in hospital-acquired infections. One reason for this emergence may be its persistence in the hospital wards, in
particular in the intensive care unit; this persistence could be partially explained by the capacity of these
microorganisms to form biofilm. Therefore, our main objective was to study the prevalence of the two main types
of biofilm formed by the most relevant Acinetobacter species, comparing biofilm formation between the different
species.
Findings: Biofilm formation at the air-liquid and solid-liquid interfaces was investigated in different Acinetobacter
spp. and it appeared to be generally more important at 25°C than at 37°C. The biofilm formation at the solid-liquid
interface by the members of the ACB-complex was at least 3 times higher than the other species (80-91% versus
5-24%). In addition, only the isolates belonging to this complex were able to form biofilm at the air-liquid interface;
between 9% and 36% of the tested isolates formed this type of pellicle. Finally, within the ACB-complex, the
biofilm formed at the air-liquid interface was almost 4 times higher for A. baumannii and Acinetobacter G13TU than
for Acinetobacter G3 (36%, 27% & 9% respectively).
Conclusions: Overall, this study has shown the capacity of the Acinetobacter spp to form two different types of
biofilm: solid-liquid and air-liquid interfaces. This ability was generally higher at 25°C which might contribute to
their persistence in the inanimate hospital environment. Our work has also demonstrated for the first time the
ability of the members of the ACB-complex to form biofilm at the air-liquid interface, a feature that was not
observed in other Acinetobacter species
Modulation of macrophage cytokine profiles during solid tumor progression: susceptibility to Candida albicans infection
<p>Abstract</p> <p>Background</p> <p>In order to attain a better understanding of the interactions between opportunist fungi and their hosts, we investigated the cytokine profile associated with the inflammatory response to <it>Candida albicans </it>infection in mice with solid Ehrlich tumors of different degrees.</p> <p>Methods</p> <p>Groups of eight animals were inoculated intraperitoneally with 5 × 10<sup>6 </sup><it>C. albicans </it>7, 14 or 21 days after tumor implantation. After 24 or 72 hours, the animals were euthanized and intraperitoneal lavage fluid was collected. Peritoneal macrophages were cultivated and the levels of IFN-γ, TNF-α, IL-12, IL-10 and IL-4 released into the supernatants were measured by ELISA. Kidney, liver and spleen samples were evaluated for fungal dissemination. Tumor-free animals and animals that had only been subjected to <it>C. albicans </it>infection were used as control groups.</p> <p>Results</p> <p>Our results demonstrated that the mice produced more IFN-γ and TNF-α and less IL-10, and also exhibited fungal clearance, at the beginning of tumor evolution. With the tumor progression, this picture changed: IL-10 production increased and IFN-γ and TNF-α release decreased; furthermore, there was extensive fungal dissemination.</p> <p>Conclusion</p> <p>Our results indicate that solid tumors can affect the production of macrophage cytokines and, in consequence, affect host resistance to opportunistic infections.</p
Secular Trends in Nosocomial Bloodstream Infections: Antibiotic-Resistant Bacteria Increase the Total Burden of Infection
In this international study, we demonstrate that increasing rates of nosocomial bloodstream infections caused by antibiotic-resistant bacteria do not replace infections caused by antibiotic-susceptible bacteria, but occur in addition to these infections, thereby increasing the total burden of diseas
The Population Structure of Acinetobacter baumannii: Expanding Multiresistant Clones from an Ancestral Susceptible Genetic Pool
Outbreaks of hospital infections caused by multidrug resistant Acinetobacter baumannii strains are of increasing concern worldwide. Although it has been reported that particular outbreak strains are geographically widespread, little is known about the diversity and phylogenetic relatedness of A. baumannii clonal groups. Sequencing of internal portions of seven housekeeping genes (total 2,976 nt) was performed in 154 A. baumannii strains covering the breadth of known diversity and including representatives of previously recognized international clones, and in 19 representatives of other Acinetobacter species. Restricted amounts of diversity and a star-like phylogeny reveal that A. baumannii is a genetically compact species that suffered a severe bottleneck in the recent past, possibly linked to a restricted ecological niche. A. baumannii is neatly demarcated from its closest relative (genomic species 13TU) and other Acinetobacter species. Multilocus sequence typing analysis demonstrated that the previously recognized international clones I to III correspond to three clonal complexes, each made of a central, predominant genotype and few single locus variants, a hallmark of recent clonal expansion. Whereas antimicrobial resistance was almost universal among isolates of these and a novel international clone (ST15), isolates of the other genotypes were mostly susceptible. This dichotomy indicates that antimicrobial resistance is a major selective advantage that drives the ongoing rapid clonal expansion of these highly problematic agents of nosocomial infections
Clinical impact of a commercially available multiplex PCR system for rapid detection of pathogens in patients with presumed sepsis
<p>Abstract</p> <p>Background</p> <p>Timely identification of pathogens is crucial to minimize mortality in patients with severe infections. Detection of bacterial and fungal pathogens in blood by nucleic acid amplification promises to yield results faster than blood cultures (BC). We analyzed the clinical impact of a commercially available multiplex PCR system in patients with suspected sepsis.</p> <p>Methods</p> <p>Blood samples from patients with presumed sepsis were cultured with the Bactec 9240™ system (Becton Dickinson, Heidelberg, Germany) and aliquots subjected to analysis with the LightCycler<sup>® </sup>SeptiFast<sup>® </sup>(SF) Test (Roche Diagnostics, Mannheim, Germany) at a tertiary care centre. For samples with PCR-detected pathogens, the actual impact on clinical management was determined by chart review. Furthermore a comparison between the time to a positive blood culture result and the SF result, based on a fictive assumption that it was done either on a once or twice daily basis, was made.</p> <p>Results</p> <p>Of 101 blood samples from 77 patients, 63 (62%) yielded concordant negative results, 14 (13%) concordant positive and 9 (9%) were BC positive only. In 14 (13%) samples pathogens were detected by SF only, resulting in adjustment of antibiotic therapy in 5 patients (7,7% of patients). In 3 samples a treatment adjustment would have been made earlier resulting in a total of 8 adjustments in all 101 samples (8%).</p> <p>Conclusion</p> <p>The addition of multiplex PCR to conventional blood cultures had a relevant impact on clinical management for a subset of patients with presumed sepsis.</p
- …