11 research outputs found

    Mass Activated Droplet Sorting (MADS) Enables Highâ Throughput Screening of Enzymatic Reactions at Nanoliter Scale

    Full text link
    Microfluidic droplet sorting enables the highâ throughput screening and selection of waterâ inâ oil microreactors at speeds and volumes unparalleled by traditional wellâ plate approaches. Most such systems sort using fluorescent reporters on modified substrates or reactions that are rarely industrially relevant. We describe a microfluidic system for highâ throughput sorting of nanoliter droplets based on direct detection using electrospray ionization mass spectrometry (ESIâ MS). Droplets are split, one portion is analyzed by ESIâ MS, and the second portion is sorted based on the MS result. Throughput of 0.7â samplesâ sâ 1 is achieved with 98â % accuracy using a selfâ correcting and adaptive sorting algorithm. We use the system to screen â 15â 000â samples in 6â h and demonstrate its utility by sorting 25â nL droplets containing transaminase expressed in vitro. Labelâ free ESIâ MS droplet screening expands the toolbox for droplet detection and recovery, improving the applicability of droplet sorting to protein engineering, drug discovery, and diagnostic workflows.A microfluidic system for sorting nanoliter droplets based on mass spectrometry is presented. Fully automated, labelâ free sorting at 0.7â samplesâ sâ 1 is achieved with 98â % accuracy. In vitro transcription and translation (ivTT) of a transaminase enzyme in ca.â 25â nL samples is demonstrated and samples are sorted on the basis of enzyme activity.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154315/1/anie201913203.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154315/2/anie201913203-sup-0001-misc_information.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154315/3/anie201913203_am.pd

    Mass Activated Droplet Sorting (MADS) Enables Highâ Throughput Screening of Enzymatic Reactions at Nanoliter Scale

    Full text link
    Microfluidic droplet sorting enables the highâ throughput screening and selection of waterâ inâ oil microreactors at speeds and volumes unparalleled by traditional wellâ plate approaches. Most such systems sort using fluorescent reporters on modified substrates or reactions that are rarely industrially relevant. We describe a microfluidic system for highâ throughput sorting of nanoliter droplets based on direct detection using electrospray ionization mass spectrometry (ESIâ MS). Droplets are split, one portion is analyzed by ESIâ MS, and the second portion is sorted based on the MS result. Throughput of 0.7â samplesâ sâ 1 is achieved with 98â % accuracy using a selfâ correcting and adaptive sorting algorithm. We use the system to screen â 15â 000â samples in 6â h and demonstrate its utility by sorting 25â nL droplets containing transaminase expressed in vitro. Labelâ free ESIâ MS droplet screening expands the toolbox for droplet detection and recovery, improving the applicability of droplet sorting to protein engineering, drug discovery, and diagnostic workflows.Ein Mikrofluidiksystem zur Sortierung von NanolitertrÜpfchen basierend auf Massenspektrometrie erreicht eine vollautomatische markierungsfreie Sortierung bei 0.7 Probenâ sâ 1 mit 98â % Genauigkeit. Die Inâ vitroâ Transkription und â Translation (ivTT) eines Transaminaseâ Enzyms in Proben von etwa 25â nL wird demonstriert, und die Proben werden nach ihrer Enzymaktivität sortiert.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154446/1/ange201913203-sup-0001-misc_information.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154446/2/ange201913203.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154446/3/ange201913203_am.pd

    Facile Quantum Yield Determination via NMR Actinometry

    No full text
    A simplified approach to quantum yield (ϕ) measurement using in situ LED NMR spectroscopy has been developed. The utility and performance of NMR actinometry has been demonstrated for the well-known chemical actinometers potassium ferrioxalate and <i>o</i>-nitrobenzaldehyde. A novel NMR-friendly actinometer, 2,4-dinitrobenzaldehyde, has been introduced for both 365 and 440 nm wavelengths. The method has been utilized successfully to measure the quantum yield of several recently published photochemical reactions

    Unlocking the Potential of High-Throughput Experimentation for Electrochemistry with a Standardized Microscale Reactor

    No full text
    Organic electrochemistry has emerged as an enabling and sustainable technology in modern organic synthesis. Despite the recent renaissance of electrosynthesis, the broad adoption of electrochemistry in the synthetic community and, especially in industrial settings, has been hindered by the dearth of general, standardized platforms for high-throughput experimentation (HTE). Herein, we disclose the design of the HTe-Chem, a high-throughput microscale electrochemical reactor that is compatible with existing HTE infrastructure, and enables rapid evaluation of a broad array of electrochemical reaction parameters. Utilizing the HTe-Chem to accelerate reaction optimization, reaction discovery, and chemical library synthesis is illustrated using a suite of oxidative and reductive transformations under constant current, constant voltage, and electrophotochemical conditions

    Evolving Economics: Synthesis

    No full text
    corecore