357 research outputs found

    Multiplexed, High Density Electrophysiology with Nanofabricated Neural Probes

    Get PDF
    Extracellular electrode arrays can reveal the neuronal network correlates of behavior with single-cell, single-spike, and sub-millisecond resolution. However, implantable electrodes are inherently invasive, and efforts to scale up the number and density of recording sites must compromise on device size in order to connect the electrodes. Here, we report on silicon-based neural probes employing nanofabricated, high-density electrical leads. Furthermore, we address the challenge of reading out multichannel data with an application-specific integrated circuit (ASIC) performing signal amplification, band-pass filtering, and multiplexing functions. We demonstrate high spatial resolution extracellular measurements with a fully integrated, low noise 64-channel system weighing just 330 mg. The on-chip multiplexers make possible recordings with substantially fewer external wires than the number of input channels. By combining nanofabricated probes with ASICs we have implemented a system for performing large-scale, high-density electrophysiology in small, freely behaving animals that is both minimally invasive and highly scalable

    Self-Compassion, emotion regulation and stress among australian psychologists: Testing an emotion regulation model of self-compassion using structural equation modeling

    Get PDF
    Psychologists tend to report high levels of occupational stress, with serious implications for themselves, their clients, and the discipline as a whole. Recent research suggests that selfcompassion is a promising construct for psychologists in terms of its ability to promote psychological wellbeing and resilience to stress; however, the potential benefits of self-compassion are yet to be thoroughly explored amongst this occupational group. Additionally, while a growing body of research supports self-compassion as a key predictor of psychopathology, understanding of the processes by which self-compassion exerts effects on mental health outcomes is limited. Structural equation modelling (SEM) was used to test an emotion regulation model of self-compassion and stress among psychologists, including postgraduate trainees undertaking clinical work (n = 198). Self-compassion significantly negatively predicted emotion regulation difficulties and stress symptoms. Support was also found for our preliminary explanatory model of self-compassion, which demonstrates the mediating role of emotion regulation difficulties in the self-compassion-stress relationship. The final self-compassion model accounted for 26.2% of variance in stress symptoms. Implications of the findings and limitations of the study are discussed

    Bone Microenvironment Specific Roles of ITAM Adapter Signaling during Bone Remodeling Induced by Acute Estrogen-Deficiency

    Get PDF
    Immunoreceptor tyrosine-based activation motif (ITAM) signaling mediated by DAP12 or Fcε receptor Iγ chain (FcRγ) have been shown to be critical for osteoclast differentiation and maturation under normal physiological conditions. Their function in pathological conditions is unknown. We studied the role of ITAM signaling during rapid bone remodeling induced by acute estrogen-deficiency in wild-type (WT), DAP12-deficient (DAP12-/-), FcRγ-deficient (FcRγ-/-) and double-deficient (DAP12-/-FcRγ-/-) mice. Six weeks after ovariectomy (OVX), DAP12-/-FcRγ-/- mice showed resistance to lumbar vertebral body (LVB) trabecular bone loss, while WT, DAP12-/- and FcRγ-/- mice had significant LVB bone loss. In contrast, all ITAM adapter-deficient mice responded to OVX with bone loss in both femur and tibia of approximately 40%, relative to basal bone volumes. Only WT mice developed significant cortical bone loss after OVX. In vitro studies showed microenvironmental changes induced by OVX are indispensable for enhanced osteoclast formation and function. Cytokine changes, including TGFβ and TNFα, were able to induce osteoclastogenesis independent of RANKL in BMMs from WT but not DAP12-/- and DAP12-/-FcRγ-/- mice. FSH stimulated RANKL-induced osteoclast differentiation from BMMs in WT, but not DAP12-/- and DAP12-/-FcRγ-/- mice. Our study demonstrates that although ITAM adapter signaling is critical for normal bone remodeling, estrogen-deficiency induces an ITAM adapter-independent bypass mechanism allowing for enhanced osteoclastogenesis and activation in specific bony microenvironments

    NeuroGrid: recording action potentials from the surface of the brain.

    Get PDF
    Recording from neural networks at the resolution of action potentials is critical for understanding how information is processed in the brain. Here, we address this challenge by developing an organic material-based, ultraconformable, biocompatible and scalable neural interface array (the 'NeuroGrid') that can record both local field potentials(LFPs) and action potentials from superficial cortical neurons without penetrating the brain surface. Spikes with features of interneurons and pyramidal cells were simultaneously acquired by multiple neighboring electrodes of the NeuroGrid, allowing for the isolation of putative single neurons in rats. Spiking activity demonstrated consistent phase modulation by ongoing brain oscillations and was stable in recordings exceeding 1 week's duration. We also recorded LFP-modulated spiking activity intraoperatively in patients undergoing epilepsy surgery. The NeuroGrid constitutes an effective method for large-scale, stable recording of neuronal spikes in concert with local population synaptic activity, enhancing comprehension of neural processes across spatiotemporal scales and potentially facilitating diagnosis and therapy for brain disorders

    Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo

    Get PDF
    We use data from the second science run of the LIGO gravitational-wave detectors to search for the gravitational waves from primordial black hole (PBH) binary coalescence with component masses in the range 0.2--1.0M1.0 M_\odot. The analysis requires a signal to be found in the data from both LIGO observatories, according to a set of coincidence criteria. No inspiral signals were found. Assuming a spherical halo with core radius 5 kpc extending to 50 kpc containing non-spinning black holes with masses in the range 0.2--1.0M1.0 M_\odot, we place an observational upper limit on the rate of PBH coalescence of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.

    Spectrotemporal Processing in Spectral Tuning Modules of Cat Primary Auditory Cortex

    Get PDF
    Spectral integration properties show topographical order in cat primary auditory cortex (AI). Along the iso-frequency domain, regions with predominantly narrowly tuned (NT) neurons are segregated from regions with more broadly tuned (BT) neurons, forming distinct processing modules. Despite their prominent spatial segregation, spectrotemporal processing has not been compared for these regions. We identified these NT and BT regions with broad-band ripple stimuli and characterized processing differences between them using both spectrotemporal receptive fields (STRFs) and nonlinear stimulus/firing rate transformations. The durations of STRF excitatory and inhibitory subfields were shorter and the best temporal modulation frequencies were higher for BT neurons than for NT neurons. For NT neurons, the bandwidth of excitatory and inhibitory subfields was matched, whereas for BT neurons it was not. Phase locking and feature selectivity were higher for NT neurons. Properties of the nonlinearities showed only slight differences across the bandwidth modules. These results indicate fundamental differences in spectrotemporal preferences - and thus distinct physiological functions - for neurons in BT and NT spectral integration modules. However, some global processing aspects, such as spectrotemporal interactions and nonlinear input/output behavior, appear to be similar for both neuronal subgroups. The findings suggest that spectral integration modules in AI differ in what specific stimulus aspects are processed, but they are similar in the manner in which stimulus information is processed

    Salivary changes and dental caries as potential oral markers of autoimmune salivary gland dysfunction in primary Sjögren's syndrome

    Get PDF
    BACKGROUND: the classification criteria for primary Sjögren's syndrome (pSS) include a number of oral components. In this study we evaluated if salivary flow and composition as well as dental caries are oral markers of disease severity in pSS. METHODS: in 20 patients fulfilling the American-European Consensus criteria for pSS and 20 age-matched healthy controls whole and parotid saliva flow rates and composition, measures of oral dryness, scores of decayed, missing and filled tooth surfaces (DMFS), periodontal indices, oral hygiene, and dietary habits were examined. RESULTS: in pSS, salivary flow rates, pH, and buffer capacities were lower, and DMFS, salivary sodium and chloride concentrations higher than in the healthy controls. DMFS also correlated inversely to salivary flow rates and positively to oral dryness. Apart from slightly increased gingival index, and more frequent dental visits in pSS, the periodontal condition, oral hygiene or sugar intake did not differ between these two groups. In pSS, findings were correlated to labial salivary gland focus score (FS) and presence of serum-autoantibodies to SSA/SSB (AB). The patients having both presence of AB and the highest FS (>2) also had the highest salivary sodium and chloride concentrations, the lowest salivary phosphate concentrations, lowest salivary flow rates, and highest DMFS compared to those with normal salivary concentrations of sodium and chloride at a given flow rate. CONCLUSION: the salivary changes observed in some pSS patients reflect impaired ductal salt reabsorption, but unaffected acinar transport mechanisms, despite low salivary secretion. Our results suggest that changes in salivary flow and composition as well as dental caries may serve as potential markers of the extent of autoimmune-mediated salivary gland dysfunction in pSS. The study also indicates that the ductal epithelium is functionally affected in some pSS patients, which calls for future pathophysiological studies on the mechanisms underlying this impaired salt reabsorption

    The Role of the Frank–Starling Law in the Transduction of Cellular Work to Whole Organ Pump Function: A Computational Modeling Analysis

    Get PDF
    We have developed a multi-scale biophysical electromechanics model of the rat left ventricle at room temperature. This model has been applied to investigate the relative roles of cellular scale length dependent regulators of tension generation on the transduction of work from the cell to whole organ pump function. Specifically, the role of the length dependent Ca2+ sensitivity of tension (Ca50), filament overlap tension dependence, velocity dependence of tension, and tension dependent binding of Ca2+ to Troponin C on metrics of efficient transduction of work and stress and strain homogeneity were predicted by performing simulations in the absence of each of these feedback mechanisms. The length dependent Ca50 and the filament overlap, which make up the Frank-Starling Law, were found to be the two dominant regulators of the efficient transduction of work. Analyzing the fiber velocity field in the absence of the Frank-Starling mechanisms showed that the decreased efficiency in the transduction of work in the absence of filament overlap effects was caused by increased post systolic shortening, whereas the decreased efficiency in the absence of length dependent Ca50 was caused by an inversion in the regional distribution of strain

    On the way to large-scale and high-resolution brain-chip interfacing

    Get PDF
    Brain-chip-interfaces (BCHIs) are hybrid entities where chips and nerve cells establish a close physical interaction allowing the transfer of information in one or both directions. Typical examples are represented by multi-site-recording chips interfaced to cultured neurons, cultured/acute brain slices, or implanted “in vivo”. This paper provides an overview on recent achievements in our laboratory in the field of BCHIs leading to enhancement of signals transmission from nerve cells to chip or from chip to nerve cells with an emphasis on in vivo interfacing, either in terms of signal-to-noise ratio or of spatiotemporal resolution. Oxide-insulated chips featuring large-scale and high-resolution arrays of stimulation and recording elements are presented as a promising technology for high spatiotemporal resolution interfacing, as recently demonstrated by recordings obtained from hippocampal slices and brain cortex in implanted animals. Finally, we report on an automated tool for processing and analysis of acquired signals by BCHIs

    Robust penetrating microelectrodes for neural interfaces realized by titanium micromachining

    Get PDF
    Neural prosthetic interfaces based upon penetrating microelectrode devices have broadened our understanding of the brain and have shown promise for restoring neurological functions lost to disease, stroke, or injury. However, the eventual viability of such devices for use in the treatment of neurological dysfunction may be ultimately constrained by the intrinsic brittleness of silicon, the material most commonly used for manufacture of penetrating microelectrodes. This brittleness creates predisposition for catastrophic fracture, which may adversely affect the reliability and safety of such devices, due to potential for fragmentation within the brain. Herein, we report the development of titanium-based penetrating microelectrodes that seek to address this potential future limitation. Titanium provides advantage relative to silicon due to its superior fracture toughness, which affords potential for creation of robust devices that are resistant to catastrophic failure. Realization of these devices is enabled by recently developed techniques which provide opportunity for fabrication of high-aspect-ratio micromechanical structures in bulk titanium substrates. Details are presented regarding the design, fabrication, mechanical testing, in vitro functional characterization, and preliminary in vivo testing of devices intended for acute recording in rat auditory cortex and thalamus, both independently and simultaneously
    corecore