6 research outputs found

    Myelin dysfunction drives amyloid-β deposition in models of Alzheimer's disease

    Get PDF
    The incidence of Alzheimer's disease (AD), the leading cause of dementia, increases rapidly with age, but why age constitutes the main risk factor is still poorly understood. Brain ageing affects oligodendrocytes and the structural integrity of myelin sheaths(1), the latter of which is associated with secondary neuroinflammation(2,3). As oligodendrocytes support axonal energy metabolism and neuronal health(4-7), we hypothesized that loss of myelin integrity could be an upstream risk factor for neuronal amyloid-beta (A beta) deposition, the central neuropathological hallmark of AD. Here we identify genetic pathways of myelin dysfunction and demyelinating injuries as potent drivers of amyloid deposition in mouse models of AD. Mechanistically, myelin dysfunction causes the accumulation of the A beta-producing machinery within axonal swellings and increases the cleavage of cortical amyloid precursor protein. Suprisingly, AD mice with dysfunctional myelin lack plaque-corralling microglia despite an overall increase in their numbers. Bulk and single-cell transcriptomics of AD mouse models with myelin defects show that there is a concomitant induction of highly similar but distinct disease-associated microglia signatures specific to myelin damage and amyloid plaques, respectively. Despite successful induction, amyloid disease-associated microglia (DAM) that usually clear amyloid plaques are apparently distracted to nearby myelin damage. Our data suggest a working model whereby age-dependent structural defects of myelin promote A beta plaque formation directly and indirectly and are therefore an upstream AD risk factor. Improving oligodendrocyte health and myelin integrity could be a promising target to delay development and slow progression of AD

    Feasibility and Potential of Transcriptomic Analysis Using the NanoString nCounter Technology to Aid the Classification of Rejection in Kidney Transplant Biopsies

    Get PDF
    Background. Transcriptome analysis could be an additional diagnostic parameter in diagnosing kidney transplant (KTx) rejection. Here, we assessed feasibility and potential of NanoString nCounter analysis of KTx biopsies to aid the classification of rejection in clinical practice using both the Banff-Human Organ Transplant (B-HOT) panel and a customized antibody-mediated rejection (AMR)-specific NanoString nCounter Elements (Elements) panel. Additionally, we explored the potential for the classification of KTx rejection building and testing a classifier within our dataset. Methods. Ninety-six formalin-fixed paraffin-embedded KTx biopsies were retrieved from the archives of the ErasmusMC Rotterdam and the University Hospital Cologne. Biopsies with AMR, borderline or T cell-mediated rejections (BLorTCMR), and no rejection were compared using the B-HOT and Elements panels. Results. High correlation between gene expression levels was found when comparing the 2 chemistries pairwise (r = 0.76-0.88). Differential gene expression (false discovery rate; P < 0.05) was identified in biopsies diagnosed with AMR (B-HOT: 294; Elements: 76) and BLorTCMR (B-HOT: 353; Elements: 57) compared with no rejection. Using the most predictive genes from the B-HOT analysis and the Element analysis, 2 least absolute shrinkage and selection operators-based regression models to classify biopsies as AMR versus no AMR (BLorTCMR or no rejection) were developed achieving an receiver-operating-characteristic curve of 0.994 and 0.894, sensitivity of 0.821 and 0.480, and specificity of 1.00 and 0.979, respectively, during cross-validation. Conclusions. Transcriptomic analysis is feasible on KTx biopsies previously used for diagnostic purposes. The B-HOT panel has the potential to differentiate AMR from BLorTCMR or no rejection and could prove valuable in aiding kidney transplant rejection classification

    A microRNA signature that correlates with cognition and is a target against cognitive decline

    Get PDF
    While some individuals age without pathological memory impairments, others develop age-associated cognitive diseases. Since changes in cognitive function develop slowly over time in these patients, they are often diagnosed at an advanced stage of molecular pathology, a time point when causative treatments fail. Thus, there is great need for the identification of inexpensive and minimal invasive approaches that could be used for screening with the aim to identify individuals at risk for cognitive decline that can then undergo further diagnostics and eventually stratified therapies. In this study, we use an integrative approach combining the analysis of human data and mechanistic studies in model systems to identify a circulating 3-microRNA signature that reflects key processes linked to neural homeostasis and inform about cognitive status. We furthermore provide evidence that expression changes in this signature represent multiple mechanisms deregulated in the aging and diseased brain and are a suitable target for RNA therapeutics
    corecore