4,919 research outputs found
Ab Initio Treatment of Collective Correlations and the Neutrinoless Double Beta Decay of Ca
Working with Hamiltonians from chiral effective field theory, we develop a
novel framework for describing arbitrary deformed medium-mass nuclei by
combining the in-medium similarity renormalization group with the generator
coordinate method. The approach leverages the ability of the first method to
capture dynamic correlations and the second to include collective correlations
without violating symmetries. We use our scheme to compute the matrix element
that governs the neutrinoless double beta decay of Ca to Ti, and
find it to have the value , near or below the predictions of most
phenomenological methods. The result opens the door to ab initio calculations
of the matrix elements for the decay of heavier nuclei such as Ge,
Te, and Xe.Comment: 6 pages, 4 figures and 1 table. supplementary material included.
version to be publishe
Hybridization gap and Fano resonance in SmB
We present results of Scanning Tunneling Microscopy and Spectroscopy (STS)
measurements on the "Kondo insulator" SmB. The vast majority of surface
areas investigated was reconstructed but, infrequently, also patches of varying
size of non-reconstructed, Sm- or B-terminated surfaces were found. On the
smallest patches, clear indications for the hybridization gap and
inter-multiplet transitions were observed. On non-reconstructed surface areas
large enough for coherent co-tunneling we were able to observe clear-cut Fano
resonances. Our locally resolved STS indicated considerable finite conductance
on all surfaces independent of their structure.Comment: 5 pages, 4 figure
Defintion of "banner clouds" based on time lapse movies
International audienceBanner clouds appear on the leeward side of a mountain and resemble a banner or a flag. This article provides a comprehensive definition of "banner clouds". It is based primarily on an extensive collection of time lapse movies, but previous attempts at an explanation of this phenomenon are also taken into account. The following ingredients are considered essential: the cloud must be attached to the mountain but not appear on the windward side; the cloud must originate from condensation of water vapour contained in the air (rather than consist of blowing snow); the cloud must be persistent; and the cloud must not be of convective nature. The definition is illustrated and discussed with the help of still images and time lapse movies taken at Mount Zugspitze in the Bavarian Alps
Definition of "banner clouds" based on time lapse movies
International audienceBanner clouds appear on the leeward side of a mountain and resemble a banner or a flag. This article provides a comprehensive definition of "banner clouds". It is based primarily on an extensive collection of time lapse movies, but previous attempts at an explanation of this phenomenon are also taken into account. The following ingredients are considered essential: the cloud must be attached to the mountain but not appear on the windward side; the cloud must originate from condensation of water vapour contained in the air (rather than consist of blowing snow); the cloud must be persistent; and the cloud must not be of convective nature. The definition is illustrated and discussed with the help of still images and time lapse movies taken at Mount Zugspitze in the Bavarian Alps
Domain wall dynamics in a single CrO grain
Recently we have reported on the magnetization dynamics of a single CrO
grain studied by micro Hall magnetometry (P. Das \textit{et al.}, Appl. Phys.
Lett. \textbf{97} 042507, 2010). For the external magnetic field applied along
the grain's easy magnetization direction, the magnetization reversal takes
place through a series of Barkhausen jumps. Supported by micromagnetic
simulations, the ground state of the grain was found to correspond to a flux
closure configuration with a single cross-tie domain wall. Here, we report an
analysis of the Barkhausen jumps, which were observed in the hysteresis loops
for the external field applied along both the easy and hard magnetization
directions. We find that the magnetization reversal takes place through only a
few configuration paths in the free-energy landscape, pointing to a high purity
of the sample. The distinctly different statistics of the Barkhausen jumps for
the two field directions is discussed.Comment: JEMS Conference, to appear in J. Phys. Conf. Se
Disorder-driven electronic localization and phase separation in superconducting Fe1+yTe0.5Se0.5 single crystals
We have investigated the influence of Fe-excess on the electrical transport
and magnetism of Fe1+yTe0.5Se0.5 (y=0.04 and 0.09) single crystals. Both
compositions exhibit resistively determined superconducting transitions (Tc)
with an onset temperature of about 15 K. From the width of the superconducting
transition and the magnitude of the lower critical field Hc1, it is inferred
that excess of Fe suppresses superconductivity. The linear and non-linear
responses of the ac-susceptibility show that the superconducting state for
these compositions is inhomogeneous. A possible origin of this phase separation
is a magnetic coupling between Fe-excess occupying interstitial sites in the
chalcogen planes and those in the Fe-square lattice. The temperature derivative
of the resistivity drho/dT in the temperature range Tc < T < Ta with Ta being
the temperature of a magnetic anomaly, changes from positive to negative with
increasing Fe. A log 1/T divergence of the resistivity above Tc in the sample
with higher amount of Fe suggests a disorder driven electronic localization.Comment: 7 page
- …