4,331 research outputs found

    Vehicle test report: Electric Vehicle Associates electric conversion of an AMC Pacer

    Get PDF
    Tests were performed to characterize certain parameters of the EVA Pacer and to provide baseline data that can be used for the comparison of improved batteries that may be incorporated into the vehicle at a later time. The vehicle tests were concentrated on the electrical drive subsystem; i.e., the batteries, controller and motor. The tests included coastdowns to characterize the road load, and range evaluations for both cyclic and constant speed conditions. A qualitative evaluation of the vehicle's performance was made by comparing its constant speed range performance with other electric and hybrid vehicles. The Pacer performance was approximately equal to the majority of those vehicles assessed in 1977

    Vehicle test report: Electric Vehicle Associates electric conversion of an AMC Pacer

    Get PDF
    The change of pace, an electric vehicle was tested. These tests were performed to characterize certain parameters of the electric vehicle pacer and to provide baseline data that can be used for the comparison of improved batteries that may be incorporated into the vehicle at a later time. The vehicle tests were concentrated on the electrical drive subsystem, the batteries, controller and motor. Coastdowns to characterize the road load, and range evaluations for both cyclic and constant speed conditions were performed. The vehicle's performance was evaluated by comparing its constant speed range performance with described vehicles. It is found that the pacer performance is approximately equal to the majority of the vehicles tested in the 1977 assessment

    Hall effect in heavy-fermion metals

    Full text link
    The heavy fermion systems present a unique platform in which strong electronic correlations give rise to a host of novel, and often competing, electronic and magnetic ground states. Amongst a number of potential experimental tools at our disposal, measurements of the Hall effect have emerged as a particularly important one in discerning the nature and evolution of the Fermi surfaces of these enigmatic metals. In this article, we present a comprehensive review of Hall effect measurements in the heavy-fermion materials, and examine the success it has had in contributing to our current understanding of strongly correlated matter. Particular emphasis is placed on its utility in the investigation of quantum critical phenomena which are thought to drive many of the exotic electronic ground states in these systems. This is achieved by the description of measurements of the Hall effect across the putative zero-temperature instability in the archetypal heavy-fermion metal YbRh2_2Si2_2. Using the CeMMIn5_5 (with M=M = Co, Ir) family of systems as a paradigm, the influence of (antiferro-)magnetic fluctuations on the Hall effect is also illustrated. This is compared to prior Hall effect measurements in the cuprates and other strongly correlated systems to emphasize on the generality of the unusual magnetotransport in materials with non-Fermi liquid behavior.Comment: manuscript accepted in Adv. Phy

    The influence of oscillations on energy estimates for damped wave models with time-dependent propagation speed and dissipation

    Full text link
    The aim of this paper is to derive higher order energy estimates for solutions to the Cauchy problem for damped wave models with time-dependent propagation speed and dissipation. The model of interest is \begin{equation*} u_{tt}-\lambda^2(t)\omega^2(t)\Delta u +\rho(t)\omega(t)u_t=0, \quad u(0,x)=u_0(x), \,\, u_t(0,x)=u_1(x). \end{equation*} The coefficients λ=λ(t)\lambda=\lambda(t) and ρ=ρ(t)\rho=\rho(t) are shape functions and ω=ω(t)\omega=\omega(t) is an oscillating function. If ω(t)1\omega(t)\equiv1 and ρ(t)ut\rho(t)u_t is an "effective" dissipation term, then L2L2L^2-L^2 energy estimates are proved in [2]. In contrast, the main goal of the present paper is to generalize the previous results to coefficients including an oscillating function in the time-dependent coefficients. We will explain how the interplay between the shape functions and oscillating behavior of the coefficient will influence energy estimates.Comment: 37 pages, 2 figure

    Role of cross-shell excitations in the reaction 54Fe(d_pol,p)55Fe

    Full text link
    The reaction 54Fe(d_pol,p)55Fe was studied at the Munich Q3D spectrograph with a 14 MeV polarized deuteron beam. Excitation energies, angular distributions and analyzing powers were measured for 39 states up to 4.5 MeV excitation energy. Spin and parity assignments were made and spectroscopic factors deduced by comparison to DWBA calculations. The results were compared to predictions by large scale shell model calculations in the full pf-shell and it was found that reasonable agreement for energies and spectroscopic factors below 2.5 MeV could only be obtained if up to 6 particles were allowed to be excited from the f_7/2 orbital into p_3/2, f_5/2, and p_1/2 orbitals across the N=28 gap. For levels above 2.5 MeV the experimental strength distribution was found to be significantly more fragmented than predicted by the shell model calculations.Comment: 9 pages, 12 figures, 3 tables, submitted to European Physical Journal

    Stabilization of controlled diffusions via Zubov's method

    Get PDF
    We consider a controlled stochastic system which is exponentially stabilizable in probability near an attractor. Our aim is to characterize the set of points which can be driven by a suitable control to the attractor with either positive probability or with probability one. This will be done by associating to the stochastic system a suitable control problem and the corresponding Zubov equation. We then show that this approach can be used as a basis for numerical computations of these sets

    0+ states and collective bands in 228Th studied by the (p,t) reaction

    Full text link
    The excitation spectra in the deformed nucleus 228Th have been studied by means of the (p,t)-reaction, using the Q3D spectrograph facility at the Munich Tandem accelerator. The angular distributions of tritons were measured for about 110 excitations seen in the triton spectra up to 2.5 MeV. Firm 0+ assignments are made for 17 excited states by comparison of experimental angular distributions with the calculated ones using the CHUCK3 code. Assignments up to spin 6+ are made for other states. Sequences of states are selected which can be treated as rotational bands and as multiplets of excitations. Moments of inertia have been derived from these sequences, whose values may be considered as evidence of the two-phonon nature of most 0+ excitations. Experimental data are compared with interacting boson model and quasiparticle-phonon model calculations and with experimental data for 229Pa.Comment: 21 pages, 14 figure

    Homologous recombination in Leishmania enriettii.

    Full text link

    Comment on "Zeeman-Driven Lifshitz Transition: A Model for the Experimentally Observed Fermi-Surface Reconstruction in YbRh2Si2"

    Full text link
    In Phys. Rev. Lett. 106, 137002 (2011), A. Hackl and M. Vojta have proposed to explain the quantum critical behavior of YbRh2Si2 in terms of a Zeeman-induced Lifshitz transition of an electronic band whose width is about 6 orders of magnitude smaller than that of conventional metals. Here, we note that the ultra-narrowness of the proposed band, as well as the proposed scenario per se, lead to properties which are qualitatively inconsistent with the salient features observed in YbRh2Si2 near its quantum critical point.Comment: 3 page
    corecore