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1. Introduction

Lyapunov’s second method supplies necessary and sufficient conditions for the
stability of attractors of dynamical systems. This theory, originally developed for
deterministic systems, has been extended to stochastic ones using different notions
of stability ([14, 16, 18]).

In recent years, an increasing interest has been devoted to stability properties
of stochastic processes with control inputs. In this case, the basic problem is the
existence of an (open loop) control law steering the system to a desired target. This
property, which is called controllability in the deterministic jargon, is called stabiliz-
ability in the stochastic context. Suitable Lyapunov characterizations of this prop-
erty have been obtained and a corresponding theory of control Lyapunov functions
(CLFs) has been developed, see e.g. ( [1,6,9]). One of the main features and advan-
tages of the Lyapunov theory is that stability may be checked in terms of infinites-
imal decrease conditions along a suitable positive-definite function. Note, however,
that even for uncontrolled diffusions, the analogue of the converse Lyapunov theo-
rem by Kurzweil and Massera only yields a continuous Lyapunov function (this is
a result by Kushner, see [17]), and it is not known if smooth Lyapunov functions
exist in general, unless the diffusion is strictly non-degenerate away from the equi-
librium (see [14, 16]). Hence it is not reasonable to assume too much regularity for
the Lyapunov function and it is therefore important to reformulate infinitesimal
decrease conditions in an appropriate weak sense ([1, 6]).

A central problem in this context is the construction of a Lyapunov function in
the domain of attraction of the equilibrium. In this paper we address this problem
for controlled stochastic systems. Since, unless that the system has a particular
structure, a CLF is not explicitly known, it is important to provide constructive
techniques yielding such a function. In general, the approaches available in the
literature, see e.g. [10], rely heavily on regularity properties of the CLF. In this
paper we present methods based on the theory of viscosity solutions of suitable
PDEs, which will in general provide nonsmooth CLFs.

In the deterministic case, a characterization of Lyapunov functions as a solution
of a first-order PDE goes back to the work of Zubov [22]. Recently this idea has been
reinterpreted in the framework of Crandall–Lions viscosity solution theory (see [2]).
In [3, 5], a Lyapunov function for an (uncontrolled) system locally almost surely
(a.s.) exponentially stable near an attractor has been characterized as the unique
viscosity solution of a second-order PDE satisfying a Dirichlet boundary condition
on the attractor. This equation is a generalization of the classical Zubov equation
to the stochastic case. Moreover, it can be used as the basis for the numerical
approximation of the Lyapunov function ([3]).

In this paper we improve the results in [3, 5] in two directions:
(i) we consider a controlled stochastic differential equation and we obtain a

characterization of a CLF as unique solution of a second-order Hamilton–Jacobi–
Bellman equation;
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(ii) we assume a stability condition in probability near the attractor, assur-
ing that the trajectories of the stochastic systems are exponentially stable with a
probability decreasing to zero. This condition is weaker than a.s. exponential sta-
bility which is assumed in [5]. The latter implies that almost surely for each fixed
sample path the system is exponentially stable in the usual sense.

In particular, we characterize two different types of stabilizability domains: the
set D of points stabilizable to the attractor with a positive probability and the
set of points Dp stabilizable with a given probability p, for any p ∈ [0, 1] (which
includes as a special case the set of points which can be steered to the attractor
a.s.). A characterization of D is obtained by introducing a suitable optimal control
problem ssociated to the stochastic system. The corresponding value function is
a CLF on D for the stochastic system and D may be characterized as a suitable
sublevel set of this CLF.

To characterize the set Dp we introduce a discount factor δ in the optimal control
problem and the corresponding value function vδ. Passing to the limit for δ → 0,
the value functions vδ converge monotonically to a lower semicontinuous function
v0 and Dp is the set of points where v0 has the value 1 − p. Moreover, it is shown
that the previous characterizations can be effectively used to construct approximate
CLF on the corresponding domain of attraction. The paper is organized as follows.
Section 2 introduces the stochastic control problem and recalls the definitions and
the basic properties of the controls which are used. Sections 3 and 4 are devoted
respectively to the characterization of the sets D and Dp and the derivation of the
relevant Zubov equation. Finally, Sec. 5 discusses a numerical example based on a
financial model.

2. Assumptions and Preliminaries

We consider the stochastic differential equation in R
N{

dX(t) = b(X(t), α(t))dt + σ(X(t), α(t))dW (t),
X(0) = x,

(2.1)

where W is a standard M -dimensional Brownian motion and α(t), the control
applied to the system, is a progressively measurable process taking values in a
compact set A ⊂ R

L. We assume that b, σ are continuous functions defined in
R

N × A, taking values, respectively, in R
N and in the space of N × M matrices,

and satisfying for all x, y ∈ R
N and all α ∈ A

|b(x, α) − b(y, α)| + |σ(x, α) − σ(y, α)| ≤ C|x − y| (2.2)

and

|b(x, α)| + |σ(x, α)| ≤ C(1 + |x|). (2.3)

These assumptions guarantee the existence and uniqueness of a strong solution to
(2.1) for any t > 0. We denote by A the set of the admissible control laws α(t), see
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Remark 2.1. Solutions corresponding to an initial value x and a control law α ∈ A
will be denoted by Xt(x, α) (or Xt if there is no ambiguity).

Throughout we denote the distance of x ∈ R
N to a set M ⊂ R

N by

d(x, M) := inf{‖x − y‖ | y ∈ M}.
For system (2.1) we study the problem of characterizing the domains of stabi-

lizability of a viable, compact set K, which is locally exponentially stabilizable in
probability for (2.1). A set K is called viable if for any x ∈ K, there exists a control
α such that Xt(x, α) ∈ K a.s. for any t > 0. The property of local exponential
stabilizability in probability is defined by the requirement that there exist positive
constants r, λ such that for every ε > 0, there exists a C > 0 such that for every
x ∈ Kr := {x ∈ R

N : d(x, K) ≤ r} there is a control α for which

P

(
sup
t≥0

d(Xt(x, α), K)eλt ≥ C

)
≤ ε. (2.4)

Our aim is to study properties and to find characterizations of the following sets
which describe the stabilizability properties of the process

D :=
{
x ∈ R

N : ∃α ∈ A s.t. P

(
lim

t→+∞ d(Xt(x, α), K) = 0
)

> 0
}

=
{
x ∈ R

N : sup
α∈A

P

(
lim

t→+∞ d(Xt(x, α), K) = 0
)

> 0
}
,

and for p ∈ [0, 1]

Dp :=
{
x ∈ R

N : sup
α∈A

P

(
lim

t→+∞ d(Xt(x, α), K) = 0
)

= p
}
. (2.5)

Remark 2.1. We assume that the class of admissible control laws A satisfies the
properties of stability under concatenation and stability under measurable selection.

The condition for stability under concatenation is the following. For a stopping
time T , we define the T -concatenation of two control processes by setting

α1 ⊕T α2(ω, t) =
{

α1(ω, t) if t ≤ T (ω),
α2(ω, t) otherwise.

Stability under concatenation holds if α1 ⊕T α2 is an admissible control for all
admissible controls α1, α2 and all stopping times T . For the more technical condition
of stability under measurable selection we require that for all stopping times T and
all maps Φ : Ω → A, measurable with respect to the corresponding σ-algebras,
there exists a ν ∈ A such that

Φ(ω)(t) = ν(t) for Leb × P-almost all (ω, t) such that t ≥ T (ω).

In the following we need both these properties for our class of controls, to ensure a
controllability property. We assume for every x in Kr the existence of a control αx

such that the stability property (2.4) holds. Thus when we steer the process to the
set Kr we want to switch to the process αx. This can be done as follows. Given an
initial condition x0 and a process α we define the stopping time

T (ω) := inf{t ≥ 0 | Xt(x0, α) ∈ Kr}.
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Then the set V := {ω ∈ Ω | T (ω) < ∞} is F(T ) measurable and the map

Φ : ω 
→
{

αXT (x0,α)(·) if ω ∈ V
α otherwise

,

is measurable from (Ω,F(T )) to (A,BA). So, if stability under measurable selection
holds, there exists ν ∈ A such that

Φ(ω)(t) = ν(t) for Leb × P-almost all (ω, t) such that t ≥ T (ω).

Then, if stability under concatenation holds, the T -concatenated control α ⊕T ν,
for any α ∈ A, is an adapted admissible process. The reader should keep in mind
the preceding construction in the following.

Observe that the property of stability under concatenation and stability under
measurable selection also guarantee the validity of the Dynamic Programming Prin-
ciple, see (3.7), under standard regularity assumptions on the coefficients of the
problem (see [15] and [20]).

An explicit construction of a class of control laws satisfying the properties of
stability under concatenation and stability under measurable selection can be per-
formed under the convexity condition

{(σ(x, α)σT (x, α), f(x, α)): α ∈ A} is convex for all x ∈ R
N .

Then, fixed a priori a probability space (Ω,F ,Ft, P) with a right continuous increas-
ing filtration, the class of the progressively measurable processes with values in the
compact set A satisfies the desired properties.

If this convexity condition is not satisfied, we need to consider relaxed controls
and we refer to [7], [15] and [20] for the construction of a canonical probability
space associated to the control problem and the corresponding class of admissible
controls satisfying the previous properties.

Remark 2.2. Assumption (2.4) implies that, for every x ∈ Kr,

sup
α∈A

P

(
lim

t→+∞ d(Xt(x, α), K) = 0
)

= 1.

Indeed for every ε > 0, by (2.4) we find α and C for which

P

(
lim

t→+∞ d(Xt(x, α), K) = 0
)
≥ P

(
sup
t≥0

d(Xt(x, α), K)eλt ≤ C

)
≥ 1 − ε.

Remark 2.3. In [3, 5], the problem of stability is studied (i.e. no control in (2.1))
and the equilibrium is assumed to be almost surely locally exponentially stable. This
is to say that there exist positive constants r, λ and a finite random variable β such
that for any x ∈ Kr, we have

d(Xt(x), K)eλt ≤ β a.s. for any t ≥ 0. (2.6)

This assumption implies local exponential stability in probability: for every ε > 0
it is sufficient to choose C such that

P(β ≥ C) ≤ ε.
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3. The Domain of Null Controllability

In this section, we study the properties of the set D, i.e. the set of points which
can be steered to the set K with positive probability. Throughout this section all
assumptions discussed in Sec. 2 are assumed to hold. In the following the stopping
time τ(x, α), defined as the hitting-time of Kr, will play a vital role. It is defined by

τ(x, α) = inf{t > 0 : Xt(x, α) ∈ Kr}. (3.1)

Proposition 3.1. Consider system (2.1). We have that

(i) D = {x ∈ R
N : supα∈A P (τ(x, α) < +∞) > 0}.

(ii) D is open, connected and contains Kr as a proper subset.

Proof. (i) It is easy to show that for any α

P

(
lim

t→+∞ d(Xt(x, α), K) = 0
)
≤ P (τ(x, α) < +∞) .

So if x ∈ D then there exists α such that P (τ(x, α) < +∞) > 0.
Conversely, we assume that supα∈A P(τ(x, α) < ∞) > 0. Then there exists

T > 0 such that supα∈A P(τ(x, α) < T ) > 0. By (2.4) and Remark 2.1, we obtain
for every ε > 0

sup
α∈A

P

(
lim

t→+∞ d(Xt(x, α), K) = 0, τ(x, α) < T
)

= sup
α∈A

∫ T

0

∫
d(y,K)=r

P(τ(x, α) = ds, Xτ(x,α) = dy, τ(x, α) < T )

·P
(

lim
t→+∞ d(Yt(y, α(· + s)), K) = 0 | y = Xs

)
≥ sup

α∈A
P(τ(x, α) < T ), (3.2)

where Yt(y, α(·+ s)) denotes the solution of (2.1) with initial condition y driven by
the control α shifted by s. This shows (i).
(ii) In order to prove that D is open, observe that if x ∈ D, then there exist α and
T > 0 such that P(d(XT (x, α), K) ≤ r/2) > 0. For δ sufficiently small and y ∈
B(x, δ), this implies P(d(YT (y, α), K) ≤ r) > 0 and therefore supα∈A P(τ(y, α) ≤
T ) > 0. Hence

sup
α∈A

P

(
lim

t→+∞ d(Yt(y, α), K) = 0
)

≥ sup
α∈A

P

(
lim

t→+∞ d(Yt(y, α), K) = 0, τ(y, α) ≤ T
)

= sup
α∈A

∫ T

0

∫
d(z,K)=r

P(τ(y, α) = ds, Yτ(y,α) = dz, τ(y, α) ≤ T )

·P
(

lim
t→+∞ d(Zt(z, α(· + s)), K) = 0 | z = Ys

)
= sup

α∈A
P(τ(y, α) < T ) > 0. (3.3)
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Since D is open and Kr is closed, we obtain that Kr is a proper subset of D. Finally
D is connected since for any x ∈ D there exists at least a control α and a continuous
path Xt(x, α) connecting x to Kr.

To construct a CLF for the stochastic system (2.1), we introduce v : R
n → R+

as a value function of an optimal control problem. Define

v(x) := inf
α∈A

E

[ ∫ +∞

0

g(Xt(x, α), αt)e−
R

t
0 g(Xs(x,α),αs)dsdt

]
= inf

α∈A
{
1 − E

[
e−

R +∞
0 g(Xt(x,α),αt)dt

]}
, (3.4)

where g : R
N × A → R is a non-negative bounded function such that g(x, a) = 0 if

and only if x ∈ K. Furthermore, we assume that there exist Lg, g0 > 0 such that

|g(x, a) − g(y, a)| ≤ Lg|x − y|, x, y ∈ R
N , a ∈ A (3.5)

and

g(x, a) ≥ g0, x ∈ R
N\Kr, a ∈ A. (3.6)

Note that these assumptions imply infd(y,K)≥δ,a∈A g(y, a) > 0 for each δ > 0.
By definition 0 ≤ v ≤ 1 and, since K is viable, v(x) = 0 for x ∈ K. We recall

the Dynamic Programming Principle for the value function v.

Proposition 3.2. The value function v defined in (3.4) satisfies the Dynamic Pro-
gramming Principle. That is, for every stopping time T,

v(x) = inf
α∈A

E[1 + (v(XT (x, α)) − 1)e−
R

T
0 g(Xs(x,α),αs)ds]

= inf
α∈A

E

[
v(XT (x, α))e−

R T
0 g(Xs(x,α),αs)ds

+
∫ T

0

g(Xt(x, α), αt)e−
R

t
0 g(Xs(x,α),αs)dsdt

]
. (3.7)

The proof of this principle relies on standard arguments from the theory of
optimal control and on the stability properties of the class of admissible controls
A, see Remark 2.1. For details we refer to [8] and [20].

Remark 3.3. A control Lyapunov function for the controlled stochastic process
Xt on D is a continuous, positive-definite function V with V (x) = 0 for x ∈ K

satisfying the following properties

V ≡ const. on R
N\D, (3.8)

V (x) < V |RN\D for x ∈ D, (3.9)

V is proper on D, (3.10)

inf
α∈A

E[V (Xt(x, α))] < V (x) for all t > 0 and all x ∈ D\K. (3.11)
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We note that (3.8) is assumed, in order to avoid a situation in which V decreases
along solutions in R

N\D, although stabilization to K is not possible. Similarly, the
conditions (3.9), (3.10) ensure that decrease in V is only possible within the set D
by approaching K (in terms of the sublevel sets of V , which are compact in D by
(3.10)).

The notion of Lyapunov function for uncontrolled stochastic systems was intro-
duced by Has’minskii in [14] and Kushner in [16]. They considered twice continu-
ously differentiable Lyapunov functions for which, by the Dynkin formula, condition
(3.11) is equivalent to the infinitesimal decrease condition:

1
2

N∑
i,j=1

aij(x)
∂2v

∂xi∂xj
+

N∑
i=1

bi(x)
∂v

∂xi
< 0.

In [9] Florchinger used twice continuously differentiable control Lyapunov functions
in the context of feedback stabilization. Recently, in [6] Cesaroni considered only
continuous control Lyapunov functions for stochastic systems. In this case condition
(3.11) is equivalent to v being a viscosity supersolution of

sup
a∈A

{−L(x, a)V (x)} = 0, x ∈ D\K,

where

L(x, a)· :=
1
2

N∑
i,j=1

aij(x, a)
∂2·

∂xi∂xj
+

N∑
i=1

bi(x, a)
∂·
∂xi

denotes the generator of the Markov process associated to (2.1).
The next theorem provides a characterization of the set D by means of v.

Theorem 3.4. Consider system (2.1). The function v defined in (3.4) is a control
Lyapunov function for the process Xt on D. Moreover,

D = {x ∈ R
n : v(x) < 1} and v|RN\D ≡ 1. (3.12)

Proof. Note first, that v(x) = 0 for x ∈ K, as by assumption K is viable and
g(x, a) = 0 for x ∈ K. The properties v(x) > 0 for x /∈ K and conditions (3.8),
(3.9) all follow, if we show the characterization (3.12).

To prove (3.12), let x ∈ R
N\D, then for any α ∈ A, τ(x, α) = +∞ almost surely

by Proposition 3.1. This implies by (3.6)

1 − E
[
e−

R +∞
0 g(Xt,αt)dt

] ≥ 1 −
∫
{τ(x,α)=+∞}

e−
R τ(x,α)
0 g0dtd P = 1

and therefore v(x) = 1. Conversely let x ∈ D. Then there exists a control α such
that τ(x, α) < +∞ with positive probability. So there exists T > 0 such that

δ := sup
α∈A

P(τ(x, α) < T )
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is positive. We compute, using (3.5) and (3.6),

v(x) ≤ 1 − sup
α∈A

∫
{τ(x,α)<T}

e
−R τ(x,α)

0 g0dt−R +∞
τ(x,α) g(Xt,αt)dt

d P

≤ 1 − e−g0T sup
α∈A

∫ T

0

∫
y∈Kr

E
[
e−

R +∞
0 g(Yt(y,α(·+s)),αt+s)dt

∣∣y = Xα
s

]
·P(τ(x, α) = ds, Xτ(x,α) = dy, τ(x, α) < T )

≤ 1 − e−g0T sup
α∈A

∫ T

0

∫
y∈Kr

E
[
e−Lg

R +∞
0 d(Yt(y,α(·+s)),K)dt

∣∣y = Xα
s

]
·P(τ(x, α) = ds, Xτ(x,α) = dy, τ(x, α) < T ).

Now assumption (2.4) implies that there exists C > 0 such that

sup
α∈A

P(By,α) := sup
α∈A

P

(
sup
t≥0

d(Yt(y, α), K)eλt ≤ C

)
≥ 1 − δ/2

for every y ∈ Kr. By the argument in Remark 2.1, we can find C such that
supα∈A P(BXτ (x,α),α ∩{τ(x, α) < T }) is positive. Therefore the previous inequality
yields

v(x) ≤ 1 − e−g0T sup
α∈A

∫ T

0

∫
y∈Kr

E
[
χBy,α(·+s)e

−Lg

R +∞
0 d(Yt(y,α(·+s)),K)dt

∣∣y = Xα
s

]
·P(τ(x, α) = ds, Xτ(x,α) = dy, τ(x, α) < T )

≤ 1 − e−g0T eLgC/λ sup
α∈A

P({τ(x, α) < T } ∩ BXτ (x,α),α) < 1,

as desired.
We now show that v is proper on D and that it is a continuous function. Towards

the first end we are going to show that

v(xn) → 1 for xn ∈ D, xn → x0 ∈ ∂D, (3.13)

v(xn) → 1 for xn ∈ D, ‖xn‖ → ∞. (3.14)

The continuity of v is then shown by proving

v is continuous in D, (3.15)

by which the continuity of v on R
N follows using that v ≡ 1 in R

N\D.
To prove (3.13), we argue by contradiction. Assume that there exists a sequence

of points xn ∈ D converging to x0 ∈ ∂D such that limn→∞ v(xn) ≤ 1 − η for some
η > 0. Then for any xn we can find a control αn such that

E
[
e−

R τ(xn,αn)
0 g0dt

] ≥ E
[
e−

R +∞
0 g(Xt(xn,αn),αn,t)dt

] ≥ η/2,

and therefore there exist ε > 0 and T such that P(τ(xn, αn) ≤ T ) ≥ ε. For n

sufficiently large, we have

P

(
sup
[0,T ]

|Xt(xn, α) − Xt(x0, α)| ≥ r/2

)
≤ ε/4
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for any α ∈ A. This is possible because of (2.2), (2.3), see e.g. [19, p. 49]. For such
a fixed n, arguing as in (3.3) with xn and x0 in place of x and, respectively y, we
obtain that

P

(
lim

t→+∞ d(Xt(x0, αn), K) = 0
)

> 0.

This is a contradiction to x0 ∈ R
N\D.

To prove (3.14) note that because of linear growth condition (2.3) for every
x /∈ Kr there is a time T (x) such that P(τ(x, α) < T (x)) = 0 for all controls α.
Furthermore, T (x) → ∞ as ‖x‖ → ∞. Thus

v(xn) ≥ inf
α∈A

{
1 − E

[
e−

R T(xn)
0 g(Xt(xn,α),αt)dt

]} ≥ 1 − exp(−g0T (xn)).

As T (xn) → ∞, the right-hand side tends to 1 as n → ∞. This shows the assertion.
We now prove claim (3.15). First of all, we prove that v is continuous at K

(recall that v|K ≡ 0). Fix x0 ∈ K and ε > 0. By (2.6) there exists a C > 0 such
that for all x ∈ Kr there is an αx such that

P

(
sup

t
d(Xt(x, αx), K)eλt ≥ C

)
≤ ε.

Define

Bx :=
{

ω | sup
t

d(Xt(x, αx), K)eλt ≥ C

}
,

so that P(Bx) ≤ ε for all x ∈ Kr. Fix T > 0 in such a way that Ce−λT ≤ ε and let
δ > 0 be such that

sup
[0,T ]

E|Xt(x0, αx) − Xt(x, αx)| ≤ ε/T

for x ∈ B(x0, δ). Recalling that g(x, a) = 0 if (x, a) ∈ K ×A and (3.5), we have for
x ∈ B(x0, δ) ∩ Kr

v(x) ≤ E

∫ +∞

0

g(Xt(x, α), αt)e−
R t
0 g(Xs(x,α),as)dsdt

≤ P(Bx) +
∫

BC
x

[∫ T

0

g(Xt(x, α), αt)dt +
∫ ∞

T

g(Xt(x, α), αt)dt

]
≤ (1 + Lgε + Lg/λ)ε.

This shows continuity of v in x0.
Now, let ε > 0 and x ∈ D\K. Fix δ0 > 0 such that, if d(y, K) ≤ 2δ0, then

v(y) ≤ ε and define g∗ := infd(y,K)≥δ0/2,a∈A g(y, a) > 0. Finally, choose T > 0
such that

e−Tg∗ ≤ ε.

Let δ > 0 be such that if y ∈ B(x, δ), α ∈ A, then P(Eα) ≤ ε holds for

Eα :=

{
ω | sup

[0,T ]

|Xt(x, α) − Yt(y, α)| ≥ min{δ0/2, ε/T }
}

.
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Let α be an ε-optimal control for x and define the set

Bx :=
{
ω | d(Xt(x, α), K) > δ0 for all t ∈ [0, T ]

}
. (3.16)

For all paths we define by η = η(ω) the minimal time for which d(Xη(x, α), K) ≤ δ0

holds with the convention η(ω) = T for paths in Bx. Then, recalling the Dynamic
Programming Principle (3.7) we obtain for y ∈ B(x, δ) that

v(y) − v(x)

≤ E
[
e−

R η
0 g(Yt(y,α),αt)dt − e−

R η
0 g(Xt(x,α),αt)dt

+ e−
R

η
0 g(Yt(y,α),αt)dtv(Yη(y, α)) − e−

R
η
0 g(Xt(x,α),αt)dtv(Xη(x, α))

]
+ ε

=
∫

Bx∩Ec
α

e−
R

T
0 g(Yt(y,α),αt)dt − e−

R
T
0 g(Xt(x,α),αt)dt

+ e−
R T
0 g(Yt(y,α),αt)dt︸ ︷︷ ︸

≤ε

v(YT (y, α))︸ ︷︷ ︸
≤1

− e−
R T
0 g(Xt(x,α),αt)dtv(XT (x, α))︸ ︷︷ ︸

≥0

dP

+
∫

Bc
x∩Ec

α

e−
R

η
0 g(Yt(y,α),αt)dt − e−

R
η
0 g(Xt(x,α),αt)dt

+ e−
R η
0 g(Yt(y,α),αt)dt︸ ︷︷ ︸

≤1

v(Yη(y, α))︸ ︷︷ ︸
≤ε

− e−
R η
0 g(Xt(x,α),αt)dtv(Xη(x, α))︸ ︷︷ ︸

≥0

dP + 2ε

≤
∫

Ec

e−
R η
0 g(Yt(y,α),αt)dt − e−

R η
0 g(Xt(x,α),αt)dt + 4ε

≤
∫

Ec


Lg

∫ T

0

|Yt(y, α) − Xt(x, α)|︸ ︷︷ ︸
≤ε/T

dt


 dP + 4ε ≤ (4 + Lg)ε.

To show a bound for v(x)−v(y) for y ∈ B(x, δ), note that we can argue in the same
way, if we choose an ε-optimal control α∗ for y and define the set By analogously to
(3.16) considering Xt(y, α∗). Then similar estimates to the above yield v(x)−v(y) ≤
(4 + Lg)ε. This shows (3.15).

Finally, using the Dynamic Programming Principle (3.7), if α is an ε-optimal
control for x ∈ D\K we have

E[v(Xt(x, α)) − v(x)] ≤ E
[
(1 − e−

R
t
0 g(Xs(x,α),αs)ds)(v(Xt(x, α)) − 1)

]
+ ε

and as ε > 0 is arbitrary and the expectation on the right-hand side is negative for
x ∈ D\K we obtain the decrease condition (3.11).

Interestingly, the function v can be characterized as the unique viscosity solu-
tion of a Hamilton–Jacobi–Bellman equation (see [8] and [21] for the definition of
viscosity solutions).



September 6, 2006 19:50 WSPC/168-SD 00180

384 F. Camilli et al.

Proposition 3.5. The function v defined in (3.4) is the unique bounded continuous
viscosity solution in R

N\K of

sup
a∈A

{−L(x, a)v(x) − g(x)(1 − v(x))} = 0 (3.17)

with v(x) = 0 for x ∈ K.

Proof. From standard dynamic programming arguments (see, e.g., [8]) using the
dynamic programming principle (3.7) it follows that v is indeed a viscosity solution
of (3.17).

In order to show the uniqueness, we use the notations t ∧ s := min{t, s} and
t ∨ s := max{t, s} and use the standard sub- and superoptimality principles for
viscosity sub- and supersolutions, see [6] or [8].

First we show that if u is an upper semicontinuous bounded subsolution in
R

N\K of (3.17) with u(x) = 0 for x ∈ K then u(x) ≤ v(x). Assuming that u

is upper semicontinuous, for every ε > 0 there exists a δ > 0 (without loss of
generality, δ ≤ r) such that u(x) ≤ ε for every x such that d(x, K) ≤ δ. Denote
g∗ := infd(y,K)≥δ,a∈A g(y, a) > 0 and let u∗ > 0 be an upper bound for u on R

N .
Now fix x ∈ R

N and ε > 0 and choose δ as prescribed above. We denote
τδ(x, α) := inf{t | d(Xt(x, α), K) ≤ δ)} and we choose a control ᾱ such that

v(x) + ε ≥ E
[
1 − e−

R +∞
0 g(Xt,ᾱt)dt

]
.

For each t > 0 we define the set

Bt := {ω | τδ(x, α) ≤ t}.
Then by the suboptimality principle we have

u(x) ≤ inf
α

inf
t≥0

E
[
u(Xt∧τδ(x,α))e−

R t∧τδ (x,α)
0 g(Xs,αs)ds + 1 − e−

R t∧τδ(x,α)
0 g(Xs,αs)ds

]
≤ inf

t≥0
E
[
u(Xt∧τδ(x,ᾱ))e−

R t∧τδ(x,ᾱ)
0 g(Xs,ᾱs)ds

]
+ E

[
1 − e−

R t∧τδ (x,ᾱ)
0 g(Xs,ᾱs)ds

]︸ ︷︷ ︸
≤v(x)+ε

≤ lim sup
t→+∞

∫
Bt

u(Xτδ(x,ᾱ))︸ ︷︷ ︸
≤ε

e−
R τδ(x,ᾱ)
0 g(Xs,ᾱs)ds︸ ︷︷ ︸

≤1

dP

+
∫

BC
t

u(Xt)︸ ︷︷ ︸
≤u∗

e−
R

t
0 g(Xs,ᾱs)ds︸ ︷︷ ︸
≤e−g∗t

dP + v(x) + ε

≤ lim sup
t→+∞

ε + u∗e−g∗t + v(x) + ε ≤ v(x) + 2ε.

As ε > 0 was arbitrary, this shows the claim.
Now we prove that if w is a lower semicontinuous bounded supersolution in

R
N\K of (3.17) with w(x) = 0 for x ∈ K, then w(x) ≥ v(x). Fix ε > 0. Then

by lower semicontinuity of w and the continuity of v there exists a δ > 0 such
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that w(x) ≥ −ε and v(x) ≤ ε and thus w(x) − v(x) ≥ −2ε holds for every x with
d(x, K) ≤ δ.

Now fix x ∈ R
N and define τδ(x, α), g∗ and Bt as in the proof for u, above.

Then for any control ᾱ and any t ≥ 0 the Dynamic Programming Principle for v

yields

v(x) = inf
α

E
[
v(Xt∧τδ(x,α))e−

R t∧τδ(x,α)
0 g(Xs,αs)ds + 1 − e−

R t∧τδ (x,α)
0 g(Xs,αs)ds

]
≤ E

[
v(Xt∧τδ(x,ᾱ))e−

R t∧τδ (x,ᾱ)
0 g(Xs,ᾱs)ds

]
+ E

[
1 − e−

R t∧τδ(x,ᾱ)
0 g(Xs,ᾱs)ds

]
implying

E
[
1 − e−

R t∧τδ(x,ᾱ)
0 g(Xs,ᾱs)ds

] ≥ v(x) − E
[
v(Xt∧τδ(x,ᾱ))e−

R t∧τδ (x,ᾱ)
0 g(Xs,ᾱs)ds

]
.

Let w∗ ≤ 0 be a lower bound for w and recall that v is bounded from above
by 1. We choose a control ᾱ such that, by the superoptimality principle,

w(x) ≥ sup
t≥0

E
[
w(Xt∧τδ(x,ᾱ))e−

R t∧τδ (x,ᾱ)
0 g(Xs,ᾱs)ds

]
+ E

[
1 − e−

R t∧τδ (x,ᾱ)
0 g(Xs,ᾱs)ds

]− ε

≥ sup
t≥0

E
[
w(Xt∧τδ(x,ᾱ))e−

R t∧τδ (x,ᾱ)
0 g(Xs,ᾱs)ds

]
+ v(x) − E

[
v(Xt∧τδ(x,ᾱ))e−

R t∧τδ(x,ᾱ)
0 g(Xs,ᾱs)ds

]− ε

≥ lim inf
t→+∞ E

[
(w(Xt∧τδ(x,ᾱ)) − v(Xt∧τδ(x,ᾱ)))e−

R t∧τδ(x,ᾱ)
0

]
+ v(x) − ε

= lim inf
t→+∞

∫
Bt

(w(Xτδ(x,ᾱ)) − v(Xτδ(x,ᾱ)))︸ ︷︷ ︸
≥−2ε

e−
R τδ(x,ᾱ)
0 g(Xs,ᾱs)ds︸ ︷︷ ︸

∈[0,1]

dP

+ lim inf
t→+∞

∫
BC

t

(w(Xt) − v(Xt))︸ ︷︷ ︸
≥w∗−1

e−
R

t
0 g(Xs,ᾱs)ds︸ ︷︷ ︸
∈[0,e−g∗t]

dP + v(x) − ε

≥ v(x) − 3ε.

This yields the assertion because ε > 0 was arbitrary.
Combining the respective inequalities for the sub- and supersolutions now yields

the uniqueness.

4. Null-Controllability with a Given Probability

In this section we are interested in the sets Dp, see (2.5), of the points which are
stabilizable to K with a given probability p. In order to describe these sets we
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consider a family of Zubov functions depending on a positive parameter δ. These
functions are defined by

vδ(x) = inf
α∈A

E

[ ∫ +∞

0

δg(Xt(x, α), αt)e−
R

t
0 δg(Xs(x,α),αs)dsdt

]
= inf

α∈A
E
[
1 − E

[
e−

R +∞
0 δg(Xt(x,α),αt)dt

]]
, (4.1)

where g is a function satisfying all conditions that we imposed for (3.4). Since
δ > 0 is only a scaling factor, vδ satisfies the same properties as v defined in (3.4).
In particular, the characterization provided by Theorem 3.4 holds with vδ in place
of v, for any δ > 0. Moreover, vδ is the unique bounded continuous viscosity solution
of the equation

sup
a∈A

{−L(x, a)vδ − δ(1 − vδ)g(x)} = 0 x ∈ R
N , (4.2)

such that vδ(x) = 0 for x ∈ K. The following result shows how the functions vδ(x)
may be used to characterize the sets Dp.

Theorem 4.1. Consider system (2.1) and the functions vδ defined in (4.1). For
any p ∈ [0, 1],

Dp =
{
x ∈ R

N : lim
δ→0

vδ(x) = 1 − p
}
. (4.3)

Remark 4.2. A property corresponding to (4.3) was proved in [3] for the uncon-
trolled process, under the stronger assumptions of almost sure exponential stability
(see (2.6)) of K and a technical condition on E[d(Xt, K)q] for some q ∈ (0, 1] (see
(11) in [3]).

To prove the theorem, we need two preliminary lemmas.

Lemma 4.3. Consider system (2.1) and the hitting-time τ(x, α) defined in (3.1).
For all x ∈ R

N ,

lim
δ→0

sup
α∈A

E[e−δτ(x,α)] = sup
α∈A

P(τ(x, α) < +∞). (4.4)

Proof. Fix ε > 0. Let α ∈ A be such that supα∈A E[e−δτ(x,α)] ≤ E[e−δτ(x,α)] + ε

and T0 such that exp(−δT ) ≤ ε for T > T0. Then for T > T0

E[e−δτ(x,α)] ≤ E[e−δτ(x,α)χ{τ(x,a)<T}] + E[e−δT ]

≤ P[τ(x, α) < T ] + ε ≤ sup
α∈A

P[τ(x, α) < ∞] + ε,

which implies that

lim sup
δ→0

sup
α∈A

E[e−δτ(x,α)] ≤ sup
α∈A

P[τ(x, α) < ∞].
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To obtain the converse inequality in (4.4), choose α ∈ A, T sufficiently large
such that

sup
α∈A

P[τ(x, α) < ∞] ≤ P[τ(x, α) < ∞] + ε ≤ P[τ(x, α) < T ] + 2ε.

Now fix δ > 0 small enough so that, for t < T , we have e−δt ≥ 1 − ε. Then

E[e−δτ(x,α)] ≥ E[e−δτ(x,α)χ{τ(x,α)<T}]

≥ E[(1 − ε)χ{τ(x,α)<T}] = (1 − ε)P[τ(x, α) < T ]

≥ (1 − ε)
(

sup
α∈A

P[τ(x, α) < ∞] − 2ε

)
.

Since ε > 0 is arbitrary, it follows that

lim inf
δ→0

sup
α∈A

E[e−δτ(x,α)] ≥ sup
α∈A

P[τ(x, α) < ∞].

The second lemma is an estimate of vδ in Kr.

Lemma 4.4. Consider system (2.1) and the functions vδ defined in (4.1). Then
limδ→0 supKr

|vδ| = 0.

Proof. By (2.4), given ε > 0, we can find C > 0 such that for any x ∈ Kr there
exists an α ∈ A such that P(B) := P(supt d(Xt(x, α), K)eλt ≥ C) ≤ ε. Select δ in
such a way that Cδ < ε. Hence

vδ(x) ≤
∫

B

(1 − e−
R +∞
0 δg(Xt,αt)dt)dP +

∫
BC

(1 − e−
R +∞
0 δg(Xt,αt)dt)dP

≤ P(B) + δLg

∫
BC

∫ +∞

0

d(Xt(x, α), K)dt dP

≤ ε + LgP(BC)ε
∫ +∞

0

e−λtdt ≤ Cε,

where C is independent of ε. This shows the assertion.

Proof of Theorem 4.1. Using a slight extension of (3.2) in the the proof of
Proposition 3.1 and Remark 2.2 we see that

sup
α∈A

P

(
lim

t→+∞ d(Xt(x, α), K) = 0
)

= sup
α∈A

P(τ(x, α) < +∞).

Thus the statement of the theorem follows immediately from Lemma 4.3 if we prove
that

lim
δ→0

vδ(x) = 1 − lim
δ→0

sup
α∈A

{
E[e−δτ(x,α)]

}
. (4.5)

In order to prove (4.5), note that, if α ∈ A is ε-optimal, we have

vδ(x) + ε ≥ 1 − E
[
e−

R τ(x,α)
0 δg(Xt,αt)dt

] ≥ 1 − E
[
e−δg0τ(x,α)

]
,
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and hence

lim inf
δ→0

vδ(x) + ε ≥ 1 − lim sup
δ→0

E[e−δg0τ(x,α)]

= 1 − lim sup
δ→0

E[e−δτ(x,α)] ≥ 1 − lim sup
δ→0

sup
α∈A

{
E[e−δτ(x,α)]

}
.

As ε > 0 is arbitrary, this shows the claim. To prove the converse inequality in
(4.5) for fixed ε > 0, we choose T > 0 large enough such that e−δMgT ≤ ε, where
Mg is an upper bound for g. Now vδ is continuous so that we have by the Dynamic
Programming Principle that

vδ(x) = inf
a∈A

E

[ ∫ τ(x,α)∧T

0

δg(Xt, αt)e−
R t
0 δg(Xs,αs))dsdt

+ e−
R τ(x,α)
0 δg(Xt,αt)dtvδ(Xτ(x,α)(x, α))χ{T≥τ(x,α)}

+ e−
R T
0 δg(Xt,αt)dtvδ(XT (x, α))χ{T≤τ(x,α)}

]
. (4.6)

The second term on the right-hand side of (4.6) can be bounded from above in
the following way:

E
[
e−

R τ(x,α)
0 δg(Xt,αt)dtvδ(Xτ(x,α))χ{T≥τ(x,α)}

]
≤ E[vδ(Xτ(x,α)(x, α))] ≤ sup

Kr

|vδ|. (4.7)

By the choice of T , the third term satisfies

E
[
e−

R T
0 δg(Xt,αt)dtvδ(XT (x, α))χ{T≤τ(x,α)}

] ≤ e−
R T
0 δMgdt ≤ ε. (4.8)

Inserting (4.7) and (4.8) in (4.6), we obtain

vδ(x) ≤ inf
a∈A

E

[ ∫ τ(x,α)

0

δg(Xt, αt)e−
R

t
0 δg(Xs,αs)dsdt

]
+ sup

Kr

|vδ| + ε

= 1 − sup
a∈A

E
[
e−

R τ(x,α)
0 δg(Xs,αs)ds

]
+ sup

Kr

|vδ| + ε

≤ 1 − sup
α∈A

E
[
e−δMgτ(x,α)dt

]
+ sup

Kr

|vδ| + ε.

As ε > 0 is arbitrary, by Lemma 4.4 we get

lim sup
δ→0

vδ(x) ≤ lim
δ→0

(
1 − sup

α∈A
E[e−δMgτ(x,α)] + sup

Kr

|vδ|
)

= 1 − lim
δ→0

sup
α∈A

E[e−δτ(x,α)].

Remark 4.5. Note that the sequence vδ is decreasing in δ. By stability properties
of viscosity solution, this implies that the sequence vδ converges to a function v0

whose lower semicontinuous envelope (see [8]) is a supersolution of the Hamilton–
Jacobi–Bellman equation

sup
a∈A

{−L(x, a)v(x)} = 0, x ∈ R
N\K
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with v0(x) = 0 on K. The previous equation is related to an ergodic control problem
for (2.1). In this respect the Zubov equation with positive discount factor can
be seen as a regularization of the limit ergodic control problem which gives the
appropriate characterization of the sets Dp.

5. A Numerical Example

We illustrate our results by a numerical example. The example is a stochastic version
of a deterministic creditworthiness model discussed in [12, 13]. Consider

dX1(t) = (α(t) − λX1(t))dt + σX1(t)dW (t),

dX2(t) = (H(X1(t), X2(t)) − f(X1(t), α(t)))dt

with

H(x1, x2) =




α1(
α2 + x1−x2

x1

)µ θx2, 0 ≤ x2 ≤ x1

α1

α22
θx2, x2 > x1

and

f(x1, α) = axν
1 − α − αβx−γ

1 .

In this model k = x1 is the capital stock of an economic agent, B = x2 is the
debt, j = α is the rate of investment, H is the external finance premium and f

is the agent’s net income. The goal of the economic agent is to steer the system
to the set {x2 ≤ 0}, i.e. to reduce the debt to 0 and the goal of the analysis is to
determine the maximum level of debt B∗(k0) for which this is possible, depending
on the initial capital k0. In other words, we look for the domain of controllability
of the set K = {(x1, x2) ∈ R2 |x2 ≤ 0}. Observe that in practice the problem can
be restricted to a finite interval I for the x1-value. So we consider it in a compact
set. Under this restriction, conditions (2.2) and (2.3) on the drift and diffusion of
the stochastic system hold.

In contrast to other formulations of such problems here the credit cost, modelled
by the external finance premium H , is not given by a constant interest rate, i.e.
H(x2) = θx2 but with an interest rate which grows with the ratio of debt over
capital stock, i.e. the larger x2/x1 becomes the higher the interest rate becomes.
The main goal of the study of the deterministic model in [12, 13] is the analysis
of the dependence of the maximum debt level B∗(k0) on the shape of H . Here we
pick one particular form of H and add a stochastic uncertainty in the equation for
the capital stock k = x1, i.e. the capital is now subject to random perturbations.
Instead of a domain of controllability we will now get controllability probabilities
which can be characterized by our method and computed numerically by a suitable
numerical scheme.
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In order to show that the stochastic version of the model satisfies our expo-
nential controllability assumption, we extend H to negative values of x2 via
H(x1, x2) = θx2. Then it is easily seen that for the deterministic model controllabil-
ity to K becomes equivalent to controllability to K = {(x1, x2)T ∈ R2 |x2 ≤ −1/2}.
Furthermore, also for the stochastic model any solution with initial value (x1, x2)
with x2 < −1/4 will converge to K for α ≡ 0, even in finite time, which implies the
assumed exponential controllability to the modified set K, even almost surely.

Using the parameters λ = 0.15, α2 = 100, α1 = (α2 + 1)2, µ = 2, θ = 0.1,
a = 0.29, ν = 1.1, β = 2, γ = 0.3 and the cost function g(x1, x2) = 2x2 we have
numerically computed the solution vδ for the corresponding Zubov equation (4.2)
with δ = 10−4 using the scheme described in [3] extended to the controlled case (see
[4] for more detailed information). For the numerical solution we used the time step
h = 0.05 and an adaptive grid (see [11]) covering the domain Ω = [0, 2]× [−1/2, 3].
For the control values we used the set A = [0, 0.25]. As boundary conditions for
the outflowing trajectories we used vδ = 1 on the upper boundary and vδ = 0
for the lower boundary, on the left boundary no trajectories can exit. On the right
boundary we did not impose boundary conditions (since it does not seem reasonable
to define this as either “inside” or “outside”). Instead we imposed a state constraint
by projecting all trajectories exiting to the right back to Ω. We should remark
that both the upper as well as the right boundary condition affect the attraction
probabilities, an effect which has to be taken into account in the interpretation of
the numerical results.

Figure 1 show the numerical results for σ = 0, 0.1 and 0.5 (top to bottom). In
order to improve the visibility, we have excluded the values for x1 = 0 from these
figures. Observe that for x1 = 0 and x2 > 0 it is impossible to control the system to
K, hence we obtain vδ ≈ 1 in this case. This can be seen in Fig. 2 which shows the
result including the values for x1 = 0 for σ = 0.5. Note that due to the degeneracy

(a)

Fig. 1. Numerically determined controllability probabilities for σ = (a) 0, (b) 0.1 and (c) 0.5.
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(b)

(c)

Fig. 1. (Continued)

Fig. 2. Numerically determined controllability probabilities for σ = 0.5 including the value for
x1 = 0.
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of the solution, which is almost discontinuous for x1 = 0 and x2 ≥ 0, the use of the
adaptive space discretization method from [11] is crucial in order to obtain accurate
results.
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