The reaction 54Fe(d_pol,p)55Fe was studied at the Munich Q3D spectrograph
with a 14 MeV polarized deuteron beam. Excitation energies, angular
distributions and analyzing powers were measured for 39 states up to 4.5 MeV
excitation energy. Spin and parity assignments were made and spectroscopic
factors deduced by comparison to DWBA calculations. The results were compared
to predictions by large scale shell model calculations in the full pf-shell and
it was found that reasonable agreement for energies and spectroscopic factors
below 2.5 MeV could only be obtained if up to 6 particles were allowed to be
excited from the f_7/2 orbital into p_3/2, f_5/2, and p_1/2 orbitals across the
N=28 gap. For levels above 2.5 MeV the experimental strength distribution was
found to be significantly more fragmented than predicted by the shell model
calculations.Comment: 9 pages, 12 figures, 3 tables, submitted to European Physical Journal