11 research outputs found

    Subacute Sclerosing Panencephalitis in Papua New Guinean Children: The Cost of Continuing Inadequate Measles Vaccine Coverage

    Get PDF
    Subacute sclerosing panencephalitis (SSPE) is a disabling and usually fatal brain disorder that typically occurs 3–10 years after acute measles infection. Papua New Guinea (PNG) has particularly high rates of SSPE. We report 22 cases of PNG children presenting to the provincial referral hospital in Madang Province who probably contracted acute measles when <12 months of age during a national epidemic in 2002 and who developed SSPE 5–7 years later. Based on these cases, the estimated annual SSPE incidence in Madang province in 2007–2009 was 54/million population aged <20 years. Four sub-districts had an annual incidence >100/million population aged <20 years, the highest rates ever reported. Young PNG children do not respond well to measles vaccine. Because of this, efforts such as supplementary measles immunisation programs should continue in order to reduce the pool of non-immune older people surrounding the youngest and most vulnerable members of PNG communities

    Plant-made vaccines in support of the Millennium Development Goals

    Get PDF
    Vaccines are one of the most successful public health achievements of the last century. Systematic immunisation programs have reduced the burden of infectious diseases on a global scale. However, there are limitations to the current technology, which often requires costly infrastructure and long lead times for production. Furthermore, the requirement to keep vaccines within the cold-chain throughout manufacture, transport and storage is often impractical and prohibitively expensive in developing countries—the very regions where vaccines are most needed. In contrast, plant-made vaccines (PMVs) can be produced at a lower cost using basic greenhouse agricultural methods, and do not need to be kept within such narrow temperature ranges. This increases the feasibility of developing countries producing vaccines locally at a small-scale to target the specific needs of the region. Additionally, the ability of plant-production technologies to rapidly produce large quantities of strain-specific vaccine demonstrates their potential use in combating pandemics. PMVs are a proven technology that has the potential to play an important role in increasing global health, both in the context of the 2015 Millennium Development Goals and beyond

    A vaccine cold chain freezing study in PNG highlights technology needs for hot climate countries

    No full text
    Abstract Fourteen data loggers were packed with vaccine vials at the national vaccine store, Port Moresby, Papua New Guinea (PNG), and sent to peripheral locations in the health system. The temperatures that the data loggers recorded during their passage along the cold chain indicated that heat damage was unlikely, but that all vials were exposed to freezing temperatures at some time. The commonest place where freezing conditions existed was during transport. The freezing conditions were likely induced by packing the vials too close to the ice packs that were themselves too cold, and with insufficient insulation between them. This situation was rectified and a repeat dispatch of data loggers demonstrated that the system had indeed been rectified. Avoiding freeze damage becomes even more important as the price of freeze-sensitive vaccines increases with the introduction of more multiple-antigen vaccines. This low-cost high-tech method of evaluating the cold chain function is highly recommended for developing and industrialized nations and should be used on a regular basis to check the integrity of the vaccine cold chain. The study highlights the need for technological solutions to avoid vaccine freezing, particularly in hot climate countries

    Validation of the shake test for detecting freeze damage to adsorbed vaccines

    No full text
    OBJECTIVE: To determine the validity of the shake test for detecting freeze damage in aluminium-based, adsorbed, freeze-sensitive vaccines. METHODS: A double-blind crossover design was used to compare the performance of the shake test conducted by trained health-care workers (HCWs) with that of phase contrast microscopy as a “gold standard”. A total of 475 vials of 8 different types of World Health Organization prequalified freeze-sensitive vaccines from 10 different manufacturers were used. Vaccines were kept at 5 °C. Selected numbers of vials from each type were then exposed to −25 °C and −2 °C for 24-hour periods. FINDINGS: There was complete concordance between HCWs and phase-contrast microscopy in identifying freeze-damaged vials and non-frozen samples. Non-frozen samples showed a fine-grain structure under phase contrast microscopy, but freeze-damaged samples showed large conglomerates of massed precipitates with amorphous, crystalline, solid and needle-like structures. Particles in the non-frozen samples measured from 1 μm (vaccines against diphtheria–tetanus–pertussis; Haemophilus influenzae type b; hepatitis B; diphtheria–tetanus–pertussis–hepatitis B) to 20 μm (diphtheria and tetanus vaccines, alone or in combination). By contrast, aggregates in the freeze-damaged samples measured up to 700 μm (diphtheria–tetanus–pertussis) and 350 μm on average. CONCLUSION: The shake test had 100% sensitivity, 100% specificity and 100% positive predictive value in this study, which confirms its validity for detecting freeze damage to aluminium-based freeze-sensitive vaccines
    corecore