214 research outputs found

    Placing Abstract Concepts in Space:Quantity, Time and Emotional Valence

    Get PDF
    Research has shown that abstract concepts are often conceptualized along horizontal and vertical axes. However, there are mixed results concerning which axis is preferred for which type of conceptual domain. For instance, it has been suggested that the vertical axis may be preferred for quantity in tasks using linguistic stimuli (e.g., ‘more,’ ‘less’), whereas numerals (e.g., ‘1,’ ‘2,’ ‘3’) may be more prone to horizontal conceptualization. In this study, we used a task with free response options to see where participants would place quantity words (‘most,’ ‘more,’ ‘less,’ ‘least’), numerals (‘2,’ ‘4,’ ‘7,’ ‘9’), time words (‘past,’ ‘future,’ ‘earliest,’ ‘earlier,’ ‘later,’ ‘latest’) and emotional valence words (‘best,’ ‘better,’ ‘worse,’ ‘worst’). We find that for quantity words, the vertical axis was preferred; whereas for numerals, participants preferred the horizontal axis. For time concepts, participants preferred the horizontal axis; and for emotional valence, they preferred the vertical axis. Across all tasks, participants tended to use specific axes (horizontal, vertical), rather than combining these two axes in diagonal responses. These results shed light on the spatial nature of abstract thought

    AERoS: Assurance of Emergent Behaviour in Autonomous Robotic Swarms

    Full text link
    The behaviours of a swarm are not explicitly engineered. Instead, they are an emergent consequence of the interactions of individual agents with each other and their environment. This emergent functionality poses a challenge to safety assurance. The main contribution of this paper is a process for the safety assurance of emergent behaviour in autonomous robotic swarms called AERoS, following the guidance on the Assurance of Machine Learning for use in Autonomous Systems (AMLAS). We explore our proposed process using a case study centred on a robot swarm operating a public cloakroom.Comment: 12 pages, 11 figure

    Soft Gripping: Specifying for Trustworthiness

    Full text link
    Soft robotics is an emerging technology in which engineers create flexible devices for use in a variety of applications. In order to advance the wide adoption of soft robots, ensuring their trustworthiness is essential; if soft robots are not trusted, they will not be used to their full potential. In order to demonstrate trustworthiness, a specification needs to be formulated to define what is trustworthy. However, even for soft robotic grippers, which is one of the most mature areas in soft robotics, the soft robotics community has so far given very little attention to formulating specifications. In this work, we discuss the importance of developing specifications during development of soft robotic systems, and present an extensive example specification for a soft gripper for pick-and-place tasks for grocery items. The proposed specification covers both functional and non-functional requirements, such as reliability, safety, adaptability, predictability, ethics, and regulations. We also highlight the need to promote verifiability as a first-class objective in the design of a soft gripper.Comment: Updated the Standards subsection of paper. 9 pages, 2 figures, 1 table, 34 reference

    Tapping diversity lost in transformations—in vitro amplification of ligation reactions

    Get PDF
    Molecular evolution is a powerful means of engineering proteins. It usually requires the generation of a large recombinant DNA library of variants for cloning into a phage or plasmid vector, and the transformation of a host organism for expression and screening of the variant proteins. However, library size is often limited by the low yields of circular DNA and the poor transformation efficiencies of linear DNA. Here we have overcome this limitation by amplification of recombinant circular DNA molecules directly from ligation reactions. The amplification by bacteriophage Phi29 polymerase increased the number of transformants; thus from a nanogram-scale ligation of DNA fragments comprising two sub-libraries of variant antibody domains, we succeeded in amplifying a highly diverse and large combinatorial phage antibody library (>10(9) transformants in Escherichia coli and 10(5)-fold more transformants than without amplification). From the amplified library, but not from the smaller un-amplified library, we could isolate several antibody fragments against a target antigen. It appears that amplification of ligations with Phi29 polymerase can help recover clones and molecular diversity otherwise lost in the transformation step. A further feature of the method is the option of using PCR-amplified vectors for ligations

    An “Electronic Fluorescent Pictograph” Browser for Exploring and Analyzing Large-Scale Biological Data Sets

    Get PDF
    Background. The exploration of microarray data and data from other high-throughput projects for hypothesis generation has become a vital aspect of post-genomic research. For the non-bioinformatics specialist, however, many of the currently available tools provide overwhelming amounts of data that are presented in a non-intuitive way. Methodology/Principal Findings. In order to facilitate the interpretation and analysis of microarray data and data from other large-scale data sets, we have developed a tool, which we have dubbed the electronic Fluorescent Pictograph – or eFP – Browser, available a

    Development and use of genic molecular markers (GMMs) for construction of a transcript map of chickpea (Cicer arietinum L.)

    Get PDF
    A transcript map has been constructed by the development and integration of genic molecular markers (GMMs) including single nucleotide polymorphism (SNP), genic microsatellite or simple sequence repeat (SSR) and intron spanning region (ISR)-based markers, on an inter-specific mapping population of chickpea, the third food legume crop of the world and the first food legume crop of India. For SNP discovery through allele re-sequencing, primer pairs were designed for 688 genes/expressed sequence tags (ESTs) of chickpea and 657 genes/ESTs of closely related species of chickpea. High-quality sequence data obtained for 220 candidate genic regions on 2–20 genotypes representing 9 Cicer species provided 1,893 SNPs with an average frequency of 1/35.83 bp and 0.34 PIC (polymorphism information content) value. On an average 2.9 haplotypes were present in 220 candidate genic regions with an average haplotype diversity of 0.6326. SNP2CAPS analysis of 220 sequence alignments, as mentioned above, provided a total of 192 CAPS candidates. Experimental analysis of these 192 CAPS candidates together with 87 CAPS candidates identified earlier through in silico mining of ESTs provided scorable amplification in 173 (62.01%) cases of which predicted assays were validated in 143 (82.66%) cases (CGMM). Alignments of chickpea unigenes with Medicago truncatula genome were used to develop 121 intron spanning region (CISR) markers of which 87 yielded scorable products. In addition, optimization of 77 EST-derived SSR (ICCeM) markers provided 51 scorable markers. Screening of easily assayable 281 markers including 143 CGMMs, 87 CISRs and 51 ICCeMs on 5 parental genotypes of three mapping populations identified 104 polymorphic markers including 90 markers on the inter-specific mapping population. Sixty-two of these GMMs together with 218 earlier published markers (including 64 GMM loci) and 20 other unpublished markers could be integrated into this genetic map. A genetic map developed here, therefore, has a total of 300 loci including 126 GMM loci and spans 766.56 cM, with an average inter-marker distance of 2.55 cM. In summary, this is the first report on the development of large-scale genic markers including development of easily assayable markers and a transcript map of chickpea. These resources should be useful not only for genome analysis and genetics and breeding applications of chickpea, but also for comparative legume genomics

    Exon Array Analysis of Head and Neck Cancers Identifies a Hypoxia Related Splice Variant of LAMA3 Associated with a Poor Prognosis

    Get PDF
    The identification of alternatively spliced transcript variants specific to particular biological processes in tumours should increase our understanding of cancer. Hypoxia is an important factor in cancer biology, and associated splice variants may present new markers to help with planning treatment. A method was developed to analyse alternative splicing in exon array data, using probeset multiplicity to identify genes with changes in expression across their loci, and a combination of the splicing index and a new metric based on the variation of reliability weighted fold changes to detect changes in the splicing patterns. The approach was validated on a cancer/normal sample dataset in which alternative splicing events had been confirmed using RT-PCR. We then analysed ten head and neck squamous cell carcinomas using exon arrays and identified differentially expressed splice variants in five samples with high versus five with low levels of hypoxia-associated genes. The analysis identified a splice variant of LAMA3 (Laminin α 3), LAMA3-A, known to be involved in tumour cell invasion and progression. The full-length transcript of the gene (LAMA3-B) did not appear to be hypoxia-associated. The results were confirmed using qualitative RT-PCR. In a series of 59 prospectively collected head and neck tumours, expression of LAMA3-A had prognostic significance whereas LAMA3-B did not. This work illustrates the potential for alternatively spliced transcripts to act as biomarkers of disease prognosis with improved specificity for particular tissues or conditions over assays which do not discriminate between splice variants
    corecore