126 research outputs found

    Should the grading of colorectal adenocarcinoma include microsatellite instability status?

    Get PDF
    Adenocarcinomas of the colon and rectum are graded using a 2-tiered system into histologic low-grade and high-grade tumors based on the proportion of gland formation. The current grading system does not apply to subtypes of carcinomas associated with a high frequency of microsatellite instability (MSI), such as mucinous and medullary carcinomas. We investigated the combined effect of histologic grade and MSI status on survival for 738 patients with colorectal carcinoma (48% female; mean age at diagnosis 68.2 years). The proportion of high-grade adenocarcinoma was 18%. MSI was observed in 59 adenocarcinomas (9%), with higher frequency in high-grade tumors compared with low-grade tumors (20% versus 6%; P < .001). Using Cox regression models, adjusting for sex and age at diagnosis and stratifying by the American Joint Committee on Cancer stage, microsatellite stable (MSS) high-grade tumors were associated with increased hazard of all-cause and colorectal cancer specific mortality: hazard ratio 2.09 (95% confidence interval [CI], 1.58-2.77) and 2.54 (95% CI, 1.86-3.47), respectively, both P < .001. A new grading system separating adenocarcinoma into low grade (all histologic low grade and MSI high grade) and high grade (MSS histologic high grade) gave a lower Akaike information criterion value when compared with the current grading system and thus represented a better model fit to stratify patients according to survival. We found that patients with a high-grade adenocarcinoma had significantly shorter survival than patients with low-grade adenocarcinoma only if the tumor was MSS, suggesting that the grading of colorectal adenocarcinoma with high-grade histologic features should be made according to the MSI status of the tumor. (C) 2014 Elsevier Inc. All rights reserved

    The use of a risk assessment and decision support tool (CRISP) compared with usual care in general practice to increase risk-stratified colorectal cancer screening: study protocol for a randomised controlled trial.

    Get PDF
    BACKGROUND: Australia and New Zealand have the highest incidence rates of colorectal cancer worldwide. In Australia there is significant unwarranted variation in colorectal cancer screening due to low uptake of the immunochemical faecal occult blood test, poor identification of individuals at increased risk of colorectal cancer, and over-referral of individuals at average risk for colonoscopy. Our pre-trial research has developed a novel Colorectal cancer RISk Prediction (CRISP) tool, which could be used to implement precision screening in primary care. This paper describes the protocol for a phase II multi-site individually randomised controlled trial of the CRISP tool in primary care. METHODS: This trial aims to test whether a standardised consultation using the CRISP tool in general practice (the CRISP intervention) increases risk-appropriate colorectal cancer screening compared to control participants who receive standardised information on cancer prevention. Patients between 50 and 74 years old, attending an appointment with their general practitioner for any reason, will be invited into the trial. A total of 732 participants will be randomised to intervention or control arms using a computer-generated allocation sequence stratified by general practice. The primary outcome (risk-appropriate screening at 12 months) will be measured using baseline data for colorectal cancer risk and objective health service data to measure screening behaviour. Secondary outcomes will include participant cancer risk perception, anxiety, cancer worry, screening intentions and health service utilisation measured at 1, 6 and 12 months post randomisation. DISCUSSION: This trial tests a systematic approach to implementing risk-stratified colorectal cancer screening in primary care, based on an individual's absolute risk, using a state-of-the-art risk assessment tool. Trial results will be reported in 2020. TRIAL REGISTRATION: Australian and New Zealand Clinical Trial Registry, ACTRN12616001573448p . Registered on 14 November 2016

    Cancer risk and tumour spectrum in 172 patients with a germline SUFU pathogenic variation : a collaborative study of the SIOPE Host Genome Working Group

    Get PDF
    Background Little is known about risks associated with germline SUFU pathogenic variants (PVs) known as a cancer predisposition syndrome. Methods To study tumour risks, we have analysed data of a large cohort of 45 unpublished patients with a germline SUFU PV completed with 127 previously published patients. To reduce the ascertainment bias due to index patient selection, the risk of tumours was evaluated in relatives with SUFU PV (89 patients) using the Nelson-Aalen estimator. Results Overall, 117/172 (68%) SUFU PV carriers developed at least one tumour: medulloblastoma (MB) (86 patients), basal cell carcinoma (BCC) (25 patients), meningioma (20 patients) and gonadal tumours (11 patients). Thirty-three of them (28%) had multiple tumours. Median age at diagnosis of MB, gonadal tumour, first BCC and first meningioma were 1.5, 14, 40 and 44 years, respectively. Follow-up data were available for 160 patients (137 remained alive and 23 died). The cumulative incidence of tumours in relatives was 14.4% (95% CI 6.8 to 21.4), 18.2% (95% CI 9.7 to 25.9) and 44.1% (95% CI 29.7 to 55.5) at the age of 5, 20 and 50 years, respectively. The cumulative risk of an MB, gonadal tumour, BCC and meningioma at age 50 years was: 13.3% (95% CI 6 to 20.1), 4.6% (95% CI 0 to 9.7), 28.5% (95% CI 13.4 to 40.9) and 5.2% (95% CI 0 to 12), respectively. Sixty-four different PVs were reported across the entire SUFU gene and inherited in 73% of cases in which inheritance could be evaluated. Conclusion Germline SUFU PV carriers have a life-long increased risk of tumours with a spectrum dominated by MB before the age of 5, gonadal tumours during adolescence and BCC and meningioma in adulthood, justifying fine-tuned surveillance programmes.Peer reviewe

    Germline mutations in PMS2 and MLH1 in individuals with solitary loss of PMS2 expression in colorectal carcinomas from the Colon Cancer Family Registry Cohort

    Get PDF
    Immunohistochemistry for DNA mismatch repair proteins is used to screen for Lynch syndrome in individuals with colorectal carcinoma (CRC). Although solitary loss of PMS2 expression is indicative of carrying a germline mutation in PMS2, previous studies reported MLH1 mutation in some cases. We determined the prevalence of MLH1 germline mutations in a large cohort of individuals with a CRC demonstrating solitary loss of PMS2 expression

    Colorectal and other cancer risks for carriers and noncarriers from families with a DNA mismatch repair gene mutation: A Prospective Cohort Study

    Get PDF
    To determine whether cancer risks for carriers and noncarriers from families with a mismatch repair (MMR) gene mutation are increased above the risks of the general population. We prospectively followed a cohort of 446 unaffected carriers of an MMR gene mutation (MLH1, n = 161; MSH2, n = 222; MSH6, n = 47; and PMS2, n = 16) and 1,029 their unaffected relatives who did not carry a mutation every 5 years at recruitment centers of the Colon Cancer Family Registry. For comparison of cancer risk with the general population, we estimated country-, age-, and sex-specific standardized incidence ratios (SIRs) of cancer for carriers and noncarriers. Over a median follow-up of 5 years, mutation carriers had an increased risk of colorectal cancer (CRC; SIR, 20.48; 95% CI, 11.71 to 33.27; P < .001), endometrial cancer (SIR, 30.62; 95% CI, 11.24 to 66.64; P < .001), ovarian cancer (SIR, 18.81; 95% CI, 3.88 to 54.95; P < .001), renal cancer (SIR, 11.22; 95% CI, 2.31 to 32.79; P < .001), pancreatic cancer (SIR, 10.68; 95% CI, 2.68 to 47.70; P = .001), gastric cancer (SIR, 9.78; 95% CI, 1.18 to 35.30; P = .009), urinary bladder cancer (SIR, 9.51; 95% CI, 1.15 to 34.37; P = .009), and female breast cancer (SIR, 3.95; 95% CI, 1.59 to 8.13; P = .001). We found no evidence of their noncarrier relatives having an increased risk of any cancer, including CRC (SIR, 1.02; 95% CI, 0.33 to 2.39; P = .97). We confirmed that carriers of an MMR gene mutation were at increased risk of a wide variety of cancers, including some cancers not previously recognized as being a result of MMR mutations, and found no evidence of an increased risk of cancer for their noncarrier relatives

    No difference in penetrance between truncating and missense/aberrant splicing pathogenic variants in mlh1 and msh2: A prospective lynch syndrome database study

    Get PDF
    Background. Lynch syndrome is the most common genetic predisposition for hereditary cancer. Carriers of pathogenic changes in mismatch repair (MMR) genes have an increased risk of developing colorectal (CRC), endometrial, ovarian, urinary tract, prostate, and other cancers, depending on which gene is malfunctioning. In Lynch syndrome, differences in cancer incidence (penetrance) according to the gene involved have led to the stratification of cancer surveillance. By contrast, any differences in penetrance determined by the type of pathogenic variant remain unknown. Objective. To determine cumulative incidences of cancer in carriers of truncating and missense or aberrant splicing pathogenic variants of the MLH1 and MSH2 genes. Methods. Carriers of pathogenic variants of MLH1 (path_MLH1) and MSH2 (path_MSH2) genes filed in the Prospective Lynch Syndrome Database (PLSD) were categorized as truncating or missense/aberrant splicing according to the InSiGHT criteria for pathogenicity. Results. Among 5199 carriers, 1045 had missense or aberrant splicing variants, and 3930 had truncating variants. Prospective observation years for the two groups were 8205 and 34,141 years, respectively, after which there were no significant differences in incidences for cancer overall or for colorectal cancer or endometrial cancers separately. Conclusion. Truncating and missense or aberrant splicing pathogenic variants were associated with similar average cumulative incidences of cancer in carriers of path MLH1 and path_MSH2.Fil: Dominguez Valentin, Mev. St Mark’s Hospital; Reino Unido. The Norwegian Radium Hospital; Noruega. European Hereditary Tumour Group; Reino UnidoFil: Plazzer, John Paul. St Mark’s Hospital; Reino Unido. The Royal Melbourne Hospital; AustraliaFil: Sampson, Julian R.. European Hereditary Tumour Group; Reino Unido. Cardiff University; Reino UnidoFil: Engel, Christoph. European Hereditary Tumour Group; Reino Unido. Universitat Leipzig; AlemaniaFil: Aretz, Stefan. Universitat Bonn; AlemaniaFil: Jenkins, Mark A.. University of Melbourne; AustraliaFil: Sunde, Lone. Aalborg University; DinamarcaFil: Bernstein, Inge. Aalborg University; DinamarcaFil: Capella, Gabriel. European Hereditary Tumour Group; Reino Unido. St Mark’s Hospital; Reino Unido. Institut Català d’Oncologia; EspañaFil: Balaguer Prunés, Francesc. Universidad de Barcelona; EspañaFil: Macrae, Finlay. European Hereditary Tumour Group; Reino Unido. The Royal Melbourne Hospital; AustraliaFil: Winship, Ingrid M.. University of Melbourne; AustraliaFil: Thomas, Huw. Imperial College London; Reino UnidoFil: Evans, Dafydd Gareth. University of Manchester; Reino UnidoFil: Burn, John. Universidad de Newcastle; Australia. The Royal Melbourne Hospital; Australia. St Mark’s Hospital; Reino UnidoFil: Greenblatt, Marc. University of Vermont; Estados UnidosFil: de Vos tot Nederveen Cappel, Wouter H.. Isala Clinics; Países BajosFil: Sijmons, Rolf H.. University of Groningen; Países Bajos. St Mark’s Hospital; Reino Unido. European Hereditary Tumour Group; Reino UnidoFil: Nielsen, Maartje. Leids Universitair Medisch Centrum; Países BajosFil: Bertario, Lucio. Fondazione IRCCS Istituto Nazionale dei Tumori; ItaliaFil: Bonanni, Bernardo. Fondazione IRCCS Istituto Nazionale dei Tumori; ItaliaFil: Tibiletti, Maria Grazia. Università dell’Insubria; ItaliaFil: Cavestro, Giulia Martina. Vita-Salute San Raffaele University; ItaliaFil: Lindblom, Annika. Karolinska Huddinge Hospital; SueciaFil: Della Valle, Adriana. Hospital Fuerzas Armadas; UruguayFil: Lopez Kostner, Francisco. Clínica Universidad de los Andes; ChileFil: Alvarez, Karin. Clínica Universidad de los Andes; ChileFil: Gluck, Nathan. Universitat Tel Aviv; IsraelFil: Katz, Lior. Sheba Medical Center; IsraelFil: Heinimann, Karl. University Hospital Basel; SuizaFil: Piñero, Tamara Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional e Ingeniería Biomédica - Hospital Italiano. Instituto de Medicina Traslacional e Ingeniería Biomédica.- Instituto Universitario Hospital Italiano de Buenos Aires. Instituto de Medicina Traslacional e Ingeniería Biomédica; ArgentinaFil: Pavicic, Walter Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional e Ingeniería Biomédica - Hospital Italiano. Instituto de Medicina Traslacional e Ingeniería Biomédica.- Instituto Universitario Hospital Italiano de Buenos Aires. Instituto de Medicina Traslacional e Ingeniería Biomédica; Argentin
    corecore