8 research outputs found

    The effects of increasing velocity on the tractive performance of planetary rovers

    Full text link
    An emerging paradigm is being embraced in the conceptualization of future planetary exploration missions. Ambitious objectives and increasingly demanding mission constraints stress the importance associated with faster surface mobility. Driving speeds approaching or surpassing 1 m/s have been rarely used and their effect on performance is today unclear. This study presents experimental evidence and preliminary observations on the impact that increasing velocity has on the tractive performance of planetary rovers. Single-wheel driving tests were conducted using two different metallic, grousered wheels-one rigid and one flexible-over two different soils, olivine sand and CaCO3-based silty soil. Experiments were conducted at speeds between 0.01-1 m/s throughout an ample range of slip ratios (5-90%). Three performance metrics were evaluated: drawbar pull coefficient, wheel sinkage, and tractive efficiency. Results showed similar data trends among all the cases investigated. Drawbar pull and tractive efficiency considerably decreased for speeds beyond 0.2 m/s. Wheel sinkage, unlike what published evidence suggested, increased with increasing velocities. The flexible wheel performed the best at 1m/s, exhibiting 2 times higher drawbar pull and efficiency with 18% lower sinkage under low slip conditions. Although similar data trends were obtained, a different wheel-soil interactive behavior was observed when driving over the different soils. Overall, despite the performance reduction experienced at higher velocities, a speed in the range of 0.2-0.3 m/s would enable 5-10 times faster traverses, compared to current rovers driving capability, while only diminishing drawbar pull and efficiency by 7%. The measurements collected and the analysis presented here lay the groundwork for initial stages in the development of new locomotion subsystems for planetary surface exploration. At the same time...Comment: 15th International Society for Terrain Vehicle Systems (ISTVS) Conference, Prague, Czech Republic, 201

    A Goal-Oriented Autonomous Controller for Space Exploration

    Get PDF
    The Goal-Oriented Autonomous Controller (GOAC) is the envisaged result of a multi-institutional effort within the on-going Autonomous Controller R&D activity funded by ESA ESTEC. The objective of this effort is to design, build and test a viable on-board controller to demonstrate key concepts in fully autonomous operations for ESA missions. This three-layer architecture is an integrative effort to bring together four mature technologies; for a functional layer, a verification and validation system, a planning engine and a controller framework for planning and execution which uses the sense-plan-act paradigm for goal oriented autonomy. GOAC as a result will generate plans in situ, deterministically dispatch activities for execution, and recover from off-nominal conditions

    Habitability on Early Mars and the Search for Biosignatures with the ExoMars Rover

    No full text
    International audienceThe second ExoMars mission will be launched in 2020 to target an ancient location interpreted to have strong potential for past habitability and for preserving physical and chemical biosignatures (as well as abiotic/prebiotic organics). The mission will deliver a lander with instruments for atmospheric and geophysical investigations and a rover tasked with searching for signs of extinct life. The ExoMars rover will be equipped with a drill to collect material from outcrops and at depth down to 2 m. This subsurface sampling capability will provide the best chance yet to gain access to chemical biosignatures. Using the powerful Pasteur payload instruments, the ExoMars science team will conduct a holistic search for traces of life and seek corroborating geological context informatio

    Habitability on Early Mars and the Search for Biosignatures with the ExoMars Rover

    No full text
    corecore