83 research outputs found

    Onchocerciasis: The Pre-control Association between Prevalence of Palpable Nodules and Skin Microfilariae

    Get PDF
    *Background*: The prospect of eliminating onchocerciasis from Africa by mass treatment with ivermectin has been rejuvenated following recent successes in foci in Mali, Nigeria and Senegal. Elimination prospects depend strongly on local transmission conditions and therefore on pre-control infection levels. Pre-control infection levels in Africa have been mapped largely by means of nodule palpation of adult males, a relatively crude method for detecting infection. We investigated how informative pre-control nodule prevalence data are for estimating the pre-control prevalence of

    Impact of long-term treatment of onchocerciasis with ivermectin in Kaduna State, Nigeria: first evidence of the potential for elimination in the operational area of the African Programme for Onchocerciasis Control.

    Get PDF
    BACKGROUND: Onchocerciasis can be effectively controlled as a public health problem by annual mass drug administration of ivermectin, but it was not known if ivermectin treatment in the long term would be able to achieve elimination of onchocerciasis infection and interruption of transmission in endemic areas in Africa. A recent study in Mali and Senegal has provided the first evidence of elimination after 15-17 years of treatment. Following this finding, the African Programme for Onchocerciasis Control (APOC) has started a systematic evaluation of the long-term impact of ivermectin treatment projects and the feasibility of elimination in APOC supported countries. This paper reports the first results for two onchocerciasis foci in Kaduna, Nigeria. METHODS: In 2008, an epidemiological evaluation using skin snip parasitological diagnostic method was carried out in two onchocerciasis foci, in Birnin Gwari Local Government Area (LGA), and in the Kauru and Lere LGAs of Kaduna State, Nigeria. The survey was undertaken in 26 villages and examined 3,703 people above the age of one year. The result was compared with the baseline survey undertaken in 1987. RESULTS: The communities had received 15 to 17 years of ivermectin treatment with more than 75% reported coverage. For each surveyed community, comparable baseline data were available. Before treatment, the community prevalence of O. volvulus microfilaria in the skin ranged from 23.1% to 84.9%, with a median prevalence of 52.0%. After 15 to 17 years of treatment, the prevalence had fallen to 0% in all communities and all 3,703 examined individuals were skin snip negative. CONCLUSIONS: The results of the surveys confirm the finding in Senegal and Mali that ivermectin treatment alone can eliminate onchocerciasis infection and probably disease transmission in endemic foci in Africa. It is the first of such evidence for the APOC operational area

    Feasibility of Onchocerciasis Elimination with Ivermectin Treatment in Endemic Foci in Africa: First Evidence from Studies in Mali and Senegal

    Get PDF
    The control of onchocerciasis, or river blindness, is based on annual or six-monthly ivermectin treatment of populations at risk. This has been effective in controlling the disease as a public health problem, but it is not known whether it can also eliminate infection and transmission to the extent that treatment can be safely stopped. Many doubt that this is feasible in Africa. A study was undertaken in three hyperendemic onchocerciasis foci in Mali and Senegal where treatment has been given for 15 to 17 years. The results showed that only few infections remained in the human population and that transmission levels were everywhere below postulated thresholds for elimination. Treatment was subsequently stopped in test areas in each focus, and follow-up evaluations did not detect any recrudescence of infection or transmission. Hence, the study has provided the first evidence that onchocerciasis elimination is feasible with ivermectin treatment in some endemic foci in Africa. Although further studies are needed to determine to what extent these findings can be extrapolated to other areas in Africa, the principle of onchocerciasis elimination with ivermectin treatment has been established

    The Cost of Virulence: Retarded Growth of Salmonella Typhimurium Cells Expressing Type III Secretion System 1

    Get PDF
    Virulence factors generally enhance a pathogen's fitness and thereby foster transmission. However, most studies of pathogen fitness have been performed by averaging the phenotypes over large populations. Here, we have analyzed the fitness costs of virulence factor expression by Salmonella enterica subspecies I serovar Typhimurium in simple culture experiments. The type III secretion system ttss-1, a cardinal virulence factor for eliciting Salmonella diarrhea, is expressed by just a fraction of the S. Typhimurium population, yielding a mixture of cells that either express ttss-1 (TTSS-1+ phenotype) or not (TTSS-1− phenotype). Here, we studied in vitro the TTSS-1+ phenotype at the single cell level using fluorescent protein reporters. The regulator hilA controlled the fraction of TTSS-1+ individuals and their ttss-1 expression level. Strikingly, cells of the TTSS-1+ phenotype grew slower than cells of the TTSS-1− phenotype. The growth retardation was at least partially attributable to the expression of TTSS-1 effector and/or translocon proteins. In spite of this growth penalty, the TTSS-1+ subpopulation increased from <10% to approx. 60% during the late logarithmic growth phase of an LB batch culture. This was attributable to an increasing initiation rate of ttss-1 expression, in response to environmental cues accumulating during this growth phase, as shown by experimental data and mathematical modeling. Finally, hilA and hilD mutants, which form only fast-growing TTSS-1− cells, outcompeted wild type S. Typhimurium in mixed cultures. Our data demonstrated that virulence factor expression imposes a growth penalty in a non-host environment. This raises important questions about compensating mechanisms during host infection which ensure successful propagation of the genotype

    A Salmonella Small Non-Coding RNA Facilitates Bacterial Invasion and Intracellular Replication by Modulating the Expression of Virulence Factors

    Get PDF
    Small non-coding RNAs (sRNAs) that act as regulators of gene expression have been identified in all kingdoms of life, including microRNA (miRNA) and small interfering RNA (siRNA) in eukaryotic cells. Numerous sRNAs identified in Salmonella are encoded by genes located at Salmonella pathogenicity islands (SPIs) that are commonly found in pathogenic strains. Whether these sRNAs are important for Salmonella pathogenesis and virulence in animals has not been reported. In this study, we provide the first direct evidence that a pathogenicity island-encoded sRNA, IsrM, is important for Salmonella invasion of epithelial cells, intracellular replication inside macrophages, and virulence and colonization in mice. IsrM RNA is expressed in vitro under conditions resembling those during infection in the gastrointestinal tract. Furthermore, IsrM is found to be differentially expressed in vivo, with higher expression in the ileum than in the spleen. IsrM targets the mRNAs coding for SopA, a SPI-1 effector, and HilE, a global regulator of the expression of SPI-1 proteins, which are major virulence factors essential for bacterial invasion. Mutations in IsrM result in disregulation of expression of HilE and SopA, as well as other SPI-1 genes whose expression is regulated by HilE. Salmonella with deletion of isrM is defective in bacteria invasion of epithelial cells and intracellular replication/survival in macrophages. Moreover, Salmonella with mutations in isrM is attenuated in killing animals and defective in growth in the ileum and spleen in mice. Our study has shown that IsrM sRNA functions as a pathogenicity island-encoded sRNA directly involved in Salmonella pathogenesis in animals. Our results also suggest that sRNAs may represent a distinct class of virulence factors that are important for bacterial infection in vivo

    Modelling the impact of larviciding on the population dynamics and biting rates of Simulium damnosum (s.l.): implications for vector control as a complementary strategy for onchocerciasis elimination in Africa

    Get PDF
    Background: In 2012, the World Health Organization set goals for the elimination of onchocerciasis transmission by 2020 in selected African countries. Epidemiological data and mathematical modelling have indicated that elimination may not be achieved with annual ivermectin distribution in all endemic foci. Complementary and alternative treatment strategies (ATS), including vector control, will be necessary. Implementation of vector control will require that the ecology and population dynamics of Simulium damnosum sensu lato be carefully considered. Methods: We adapted our previous SIMuliid POPulation dynamics (SIMPOP) model to explore the impact of larvicidal insecticides on S. damnosum (s.l.) biting rates in different ecological contexts and to identify how frequently and for how long vector control should be continued to sustain substantive reductions in vector biting. SIMPOP was fitted to data from large-scale aerial larviciding trials in savannah sites (Ghana) and small-scale ground larviciding trials in forest areas (Cameroon). The model was validated against independent data from Burkina Faso/Côte d’Ivoire (savannah) and Bioko (forest). Scenario analysis explored the effects of ecological and programmatic factors such as pre-control daily biting rate (DBR) and larviciding scheme design on reductions and resurgences in biting rates. Results: The estimated efficacy of large-scale aerial larviciding in the savannah was greater than that of ground-based larviciding in the forest. Small changes in larvicidal efficacy can have large impacts on intervention success. At 93% larvicidal efficacy (a realistic value based on field trials), 10 consecutive weekly larvicidal treatments would reduce DBRs by 96% (e.g. from 400 to 16 bites/person/day). At 70% efficacy, and for 10 weekly applications, the DBR would decrease by 67% (e.g. from 400 to 132 bites/person/day). Larviciding is more likely to succeed in areas with lower water temperatures and where blackfly species have longer gonotrophic cycles. Conclusions: Focal vector control can reduce vector biting rates in settings where a high larvicidal efficacy can be achieved and an appropriate duration and frequency of larviciding can be ensured. Future work linking SIMPOP with onchocerciasis transmission models will permit evaluation of the impact of combined anti-vectorial and anti-parasitic interventions on accelerating elimination of the disease

    A Research Agenda for Helminth Diseases of Humans: Towards Control and Elimination

    Get PDF
    Human helminthiases are of considerable public health importance in sub-Saharan Africa, Asia, and Latin America. The acknowledgement of the disease burden due to helminth infections, the availability of donated or affordable drugs that are mostly safe and moderately efficacious, and the implementation of viable mass drug administration (MDA) interventions have prompted the establishment of various large-scale control and elimination programmes. These programmes have benefited from improved epidemiological mapping of the infections, better understanding of the scope and limitations of currently available diagnostics and of the relationship between infection and morbidity, feasibility of community-directed or school-based interventions, and advances in the design of monitoring and evaluation (M&E) protocols. Considerable success has been achieved in reducing morbidity or suppressing transmission in a number of settings, whilst challenges remain in many others. Some of the obstacles include the lack of diagnostic tools appropriate to the changing requirements of ongoing interventions and elimination settings; the reliance on a handful of drugs about which not enough is known regarding modes of action, modes of resistance, and optimal dosage singly or in combination; the difficulties in sustaining adequate coverage and compliance in prolonged and/or integrated programmes; an incomplete understanding of the social, behavioural, and environmental determinants of infection; and last, but not least, very little investment in research and development (R&D). The Disease Reference Group on Helminth Infections (DRG4), established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR), was given the mandate to undertake a comprehensive review of recent advances in helminthiases research, identify research gaps, and rank priorities for an R&D agenda for the control and elimination of these infections. This review presents the processes undertaken to identify and rank ten top research priorities; discusses the implications of realising these priorities in terms of their potential for improving global health and achieving the Millennium Development Goals (MDGs); outlines salient research funding needs; and introduces the series of reviews that follow in this PLoS Neglected Tropical Diseases collection, “A Research Agenda for Helminth Diseases of Humans.

    Genomic Characterization of the Taylorella Genus

    Get PDF
    The Taylorella genus comprises two species: Taylorella equigenitalis, which causes contagious equine metritis, and Taylorella asinigenitalis, a closely-related species mainly found in donkeys. We herein report on the first genome sequence of T. asinigenitalis, analyzing and comparing it with the recently-sequenced T. equigenitalis genome. The T. asinigenitalis genome contains a single circular chromosome of 1,638,559 bp with a 38.3% GC content and 1,534 coding sequences (CDS). While 212 CDSs were T. asinigenitalis-specific, 1,322 had orthologs in T. equigenitalis. Two hundred and thirty-four T. equigenitalis CDSs had no orthologs in T. asinigenitalis. Analysis of the basic nutrition metabolism of both Taylorella species showed that malate, glutamate and alpha-ketoglutarate may be their main carbon and energy sources. For both species, we identified four different secretion systems and several proteins potentially involved in binding and colonization of host cells, suggesting a strong potential for interaction with their host. T. equigenitalis seems better-equipped than T. asinigenitalis in terms of virulence since we identified numerous proteins potentially involved in pathogenicity, including hemagluttinin-related proteins, a type IV secretion system, TonB-dependent lactoferrin and transferrin receptors, and YadA and Hep_Hag domains containing proteins. This is the first molecular characterization of Taylorella genus members, and the first molecular identification of factors potentially involved in T. asinigenitalis and T. equigenitalis pathogenicity and host colonization. This study facilitates a genetic understanding of growth phenotypes, animal host preference and pathogenic capacity, paving the way for future functional investigations into this largely unknown genus

    Taxonomic and Functional Microbial Signatures of the Endemic Marine Sponge Arenosclera brasiliensis

    Get PDF
    The endemic marine sponge Arenosclera brasiliensis (Porifera, Demospongiae, Haplosclerida) is a known source of secondary metabolites such as arenosclerins A-C. In the present study, we established the composition of the A. brasiliensis microbiome and the metabolic pathways associated with this community. We used 454 shotgun pyrosequencing to generate approximately 640,000 high-quality sponge-derived sequences (∼150 Mb). Clustering analysis including sponge, seawater and twenty-three other metagenomes derived from marine animal microbiomes shows that A. brasiliensis contains a specific microbiome. Fourteen bacterial phyla (including Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Cloroflexi) were consistently found in the A. brasiliensis metagenomes. The A. brasiliensis microbiome is enriched for Betaproteobacteria (e.g., Burkholderia) and Gammaproteobacteria (e.g., Pseudomonas and Alteromonas) compared with the surrounding planktonic microbial communities. Functional analysis based on Rapid Annotation using Subsystem Technology (RAST) indicated that the A. brasiliensis microbiome is enriched for sequences associated with membrane transport and one-carbon metabolism. In addition, there was an overrepresentation of sequences associated with aerobic and anaerobic metabolism as well as the synthesis and degradation of secondary metabolites. This study represents the first analysis of sponge-associated microbial communities via shotgun pyrosequencing, a strategy commonly applied in similar analyses in other marine invertebrate hosts, such as corals and algae. We demonstrate that A. brasiliensis has a unique microbiome that is distinct from that of the surrounding planktonic microbes and from other marine organisms, indicating a species-specific microbiome
    corecore