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Abstract

Background: The prospect of eliminating onchocerciasis from Africa by mass treatment with ivermectin has been
rejuvenated following recent successes in foci in Mali, Nigeria and Senegal. Elimination prospects depend strongly on local
transmission conditions and therefore on pre-control infection levels. Pre-control infection levels in Africa have been
mapped largely by means of nodule palpation of adult males, a relatively crude method for detecting infection. We
investigated how informative pre-control nodule prevalence data are for estimating the pre-control prevalence of
microfilariae (mf) in the skin and discuss implications for assessing elimination prospects.

Methods and Findings: We analyzed published data on pre-control nodule prevalence in males aged $20 years and mf
prevalence in the population aged $5 years from 148 African villages. A meta-analysis was performed by means of Bayesian
hierarchical multivariate logistic regression, accounting for measurement error in mf and nodule prevalence, bioclimatic
zones, and other geographical variation. There was a strong positive correlation between nodule prevalence in adult males
and mf prevalence in the general population. In the forest-savanna mosaic area, the pattern in nodule and mf prevalence
differed significantly from that in the savanna or forest areas.

Significance: We provide a tool to convert pre-control nodule prevalence in adult males to mf prevalence in the general
population, allowing historical data to be interpreted in terms of elimination prospects and disease burden of
onchocerciasis. Furthermore, we identified significant geographical variation in mf prevalence and nodule prevalence
patterns warranting further investigation of geographical differences in transmission patterns of onchocerciasis.
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le Développement (Mbam and Faro; www.ird.fr). Surveys in Nigeria were supported by WHO/UNDP/World Bank Special Programme for Research and Training on
Tropical Diseases (Project ID Numbers 870456 and 910553), the Leverhulme Trust and Sightsavers. MGB acknowledges funding from the Wellcome Trust (http://
www.wellcome.ac.uk, project grant 092677/Z/10/Z). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of
the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: l.coffeng@erasmusmc.nl

. These authors contributed equally to this work.

" These authors also contributed equally to this work.

Introduction

In 1995, the World Health Organization launched the African

Programme for Onchocerciasis Control (APOC). At that time,

APOC aimed to control morbidity due to onchocerciasis (river

blindness) in Africa, with a focus on those countries not covered by

the previous Onchocerciasis Control Programme in West Africa

(OCP). Since 1995, APOC has successfully coordinated mass

treatment with ivermectin in sixteen onchocerciasis-endemic

African countries [1]. Until recently, elimination of onchocerciasis

from African foci was deemed to be not achievable by means of

mass ivermectin treatment alone, considering the large size of the

transmission zones, the mobility of the insect vectors and human
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populations, and poor compliance with mass treatment in some

areas [2]. However, following the first reports of elimination of

onchocerciasis from foci in Mali, Senegal, and Nigeria by mass

treatment alone [3,4,5], there is renewed interest in elimination of

onchocerciasis from Africa [6].

Pre-control infection levels are an important predictor of

morbidity levels [7,8,9] and the duration of onchocerciasis control

programs required to achieve elimination of infection [10,11].

High pre-control levels of infection indicate circumstances that are

favorable for intense transmission in terms of vector abundance,

proximity to vector breeding sites, high vectorial capacity and

competence, etc. In such circumstances, mass treatment with a

drug such as ivermectin, which is predominantly microfilaricidal,

but has a lesser impact on adult worm survival, needs to be

continued for a long time and at high therapeutic and

geographical coverage before it can be stopped without consid-

erable risk of recrudescence of infection. Progress towards

elimination of onchocerciasis from APOC areas is currently being

evaluated by means of ongoing skin snipping surveys that measure

levels of infection in terms of presence and density of microfilariae

(mf) in the skin of the general population [5]. In contrast, pre-

control levels of infection in APOC areas have been quantified by

the REMO method (rapid epidemiological mapping of onchocer-

ciasis), which is based on the palpation of subcutaneous nodules

containing adult Onchocerca volvulus worms in a sample of 30–50

males aged $20 years in villages selected using a standardized

selection procedure [12,13]. Results from pre-control and ongoing

surveys will have to be compared, even though the REMO

method is much cruder for detecting presence and intensity of

infection than skin snipping. Therefore, it is important to assess

how informative pre-control nodule palpation data are, and when

and whether they can be reliably translated to equivalent measures

of skin microfilariae. In other words, there is need for a

quantitative model describing the association between pre-control

nodule prevalence and pre-control presence of skin microfilariae,

which takes into account the differences between the two methods

as well as other covariates. Such a model would also allow

estimates of pre-control nodule prevalence to be related to the

large body of literature on the correlation between mf prevalence

and prevalence of onchocercal morbidity, allowing better estima-

tion of the disease burden of onchocerciasis.

We present a statistical model describing the association

between pre-control nodule prevalence in adult males and pre-

control mf prevalence in the general population. Quantitative

relationships for this association have been previously described,

but were based on smaller number of surveys, did not provide

estimates of uncertainty around parameter estimates and model

predictions, and did not account for geographical variation or the

relatively small sample sizes routinely used for the nodule

palpation method, resulting in attenuation bias (due to measure-

ment error in nodule prevalence) [14,15,16,17]. In this study, we

analyzed original pre-control data, accounting for these factors,

and using Bayesian statistical methods, well known for providing

robust uncertainty estimates around model parameters.

Methods

Data and Study Sites
We analyzed original data on pre-control nodule prevalence in

adult males (N = 7,525 individuals) and mf prevalence in the

population aged five years and above (N = 29,775 individuals)

from 148 villages in seven geographical areas including countries

in the former OCP area, and foci in Cameroon, Nigeria, and

Uganda, which are part of APOC (Table 1, Figure 1). Most of

these data have been previously published [9,14,18,19], except for

part of the data from Cameroon. The simuliid vectors responsible

for transmission in each area have been described previously

(Table 1) [9,19,20,21,22,23]. In all areas, data on nodule and mf

prevalence had been collected simultaneously (except for Nigeria,

where nodule palpation took place six to twelve months after skin

snipping, though still before the start of control interventions). All

data on mf prevalence were based on taking two skin snips (one

from each iliac crest) from each individual examined, which were

incubated in saline for 24 hours, and village-level prevalence

values were age- and sex-standardized according to the reference

OCP population (direct standardization, supplementary Table S1).

Then, we calculated the standardized number of mf positive

persons in a village by multiplying the standardized prevalence

with the sample size, and rounding to the nearest integer. Nodule

prevalence was based on palpation-based detection of nodules that

could be attributed to onchocerciasis with reasonable certainty,

similar to the methodology used for mapping of infection in

APOC areas; i.e. nodules of uncertain etiology (e.g. possible

enlarged lymph nodes) were excluded [12]. All data were used

with permission of the authors who originally collected such data,

and were analyzed anonymously.

Statistical Methods and Model Fitting
The association between village-level mf prevalence and nodule

prevalence was quantified in a meta-analysis by means of

hierarchical multivariate logistic regression, i.e. logistic regression

where the predicted outcome is a set of correlated binary random

variables rather than a single binary random variable. A

hierarchical approach was taken to account for unmeasured

sources of variation between geographical areas. A multivariate

approach was taken to account for measurement error in each

measure of infection. This approach prevents regression of model

coefficients towards zero (attenuation bias) as we do not have to

assume that there is no measurement error in the explanatory

variable (e.g. either nodule or mf prevalence), an assumption

inherent to univariate regression [24].

We extended the ordinary hierarchical logistic regression model

to a multivariate model simultaneously predicting m binary

Author Summary

Until recently, elimination of onchocerciasis (river blind-
ness) from Africa by mass treatment with ivermectin alone
was deemed impossible. However, recent reports of
elimination of onchocerciasis from various African foci
have stimulated renewed interest. An important determi-
nant of achieving elimination is the pre-control microfilar-
ial (mf) prevalence, i.e. the percentage of people with larval
stages of the Onchocerca volvulus worm in the skin, which
can be detected in a skin snip (a small skin biopsy).
Because this method is considered invasive, pre-control
infection levels in Africa have been mapped mostly by
means of palpation of subcutaneous nodules (protuber-
ances under the skin where the adult worms live) in adult
males, a relatively crude but non-invasive method of
detecting infection. We developed a tool to derive
estimates of pre-control mf prevalence from available
pre-control nodule prevalence estimates. This tool can
help evaluate ongoing control programs, help assess local
elimination prospects, and help estimate levels of disease
due to onchocerciasis by linking pre-control nodule
palpation data to the large body of literature on the
association between mf prevalence and disease.

Onchocerciasis: Nodule and mf Prevalence

PLOS Neglected Tropical Diseases | www.plosntds.org 2 April 2013 | Volume 7 | Issue 4 | e2168



outcomes:

logit pij,m yij,m~kij,mDXij ,bm,nij,m

� �� �
~XT

ij bmzeijzej ,

where pij,m is the probability of finding k cases of the m-th binary

outcome (m = 1: presence of microfilariae in the skin; m = 2:

presence of nodules in adult males) among nm observed individuals

from the i-th unit (village) and the j-th cluster (geographical area).

The error terms eij and ej (each consisting of m components)

represent the variation (random effects) in infection levels within

and between the j geographical areas, respectively. For each village

there is a set of observed covariates Xij , and for each of the m

predicted binary outcomes there is a set of parameters bm (fixed

effects), where the intercepts b0,m~1 and b0,m~2 represent the

mean log odds of presence of mf in the general population (all

those aged $5 years) and nodules in adult males. To explain

possible large differences between geographical areas related to

bioclime, parasite strains and clinical manifestations in onchocer-

ciasis [25], we included a set of coefficients for bioclimatic zone in

the model. Here, the parameters b1,m~1 and b1,m~2 represent the

log odds ratio of observing microfilariae in the skin and

subcutaneous nodules in forest areas (including degraded forest

and forest-savanna mosaic areas), relative to savanna areas.

Correlation between nodule and mf prevalence was modeled by

assuming a multivariate normal distribution for the m components

of the error term at each level of analysis. See supplementary Text

S1, section ‘‘Model description’’ for a more detailed description of

the model.

To account for measurement error due to misclassification of

nodules (e.g. classifying lymph nodes as onchocercal nodules due

to imperfect specificity; or failing to detect at least one

subcutaneous onchocercal nodule when one or more are present,

due to imperfect sensitivity), we added parameters to the model for

specificity and sensitivity of nodule palpation, allowing these to be

estimated from the data. Prior information for parameter values

was based on the literature. A wide range of values is reported for

specificity (60%–99%), based on various definitions [15,19,26,27].

We assumed that when performed by physicians experienced in

recognizing onchocercal nodules, specificity of nodule palpation is

between 98% and 100%, based on the report of finding only four

non-onchocercal nodules among 312 extirpated nodules [19].

Further, we assumed that sensitivity increases with level of

infection, reflecting the notion that detection of at least one

nodule is more likely in a person with many onchocercal nodules

than in a person with few or only one [27]. In literature, no values

for sensitivity of nodule palpation as a method for detecting

onchocercal nodules are reported. In the current study, sensitivity

was assumed to increase linearly from some unknown minimum

sensitivity (value between 60% and 100%) for nodule prevalences

close to zero (when persons with nodules have few nodules) to

100% for nodule prevalence of 100%. The choice of a linearly

increasing pattern was based on a simulation exercise in which we

examined the association between the proportion of the nodule

carriers that is detected and the ‘true’ nodule prevalence, given

simulated true nodule counts (assuming a negative binomial

distribution of counts within a village) and some probability to

detect each nodule (minimum sensitivity). A sensitivity analysis

showed that the model fit and model predictions did not change

when assuming different values for minimum sensitivity of nodule

palpation at low infection levels (60%, 80%, or 100%). This is

explained by the fact that sensitivity is most important for high

prevalence settings (for which we assume sensitivity is high

anyway), and far less important in low prevalence settings (where
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misclassification is largely governed by specificity). Therefore, we

simplified the final model by leaving out the parameter for

sensitivity, effectively assuming 100% sensitivity of nodule

palpation for all infection levels.

Based on the model described above, we estimated the

conditional distribution of mf prevalence in a hypothetical village

outside the dataset, given an estimate of the ‘true’ nodule

prevalence in adult males (i.e. corrected for misclassification of

nodules). We assumed that nodule prevalence estimates were

based on a sample of 30 adult males, the minimal sample size used

in REMO surveys [12,13]. See Text S1, section ‘‘Model

application’’ for a more detailed description of the methods for

predicting mf prevalences in hypothetical villages.

The model was fitted to the data in a Bayesian framework.

Posterior distributions of parameters and predictions were

simulated in JAGS (see Text S1, section ‘‘Model specification in

JAGS’’ for code), a program for analysis of Bayesian models using

Markov Chain Monte Carlo (MCMC) simulation based on the

Gibbs sampling algorithm (version 3.2.0; Martyn Plummer, 2012,

http://mcmc-jags.sourceforge.net). Simulations in JAGS were set

up and analyzed in R (version 2.14.2) [28], using packages rjags

(version 3–5, Martyn Plummer, 2011, http://CRAN.R-project.

org/package = rjags) and R2jags (version 0.03-06, Yu-Sung Su,

2011, http://CRAN.R-project.org/package = R2jags). Improve-

ments in model fit by addition of parameters were assessed via the

deviance information criterion (DIC), a generalization of Akaike’s

information criterion for hierarchical models (lower values indicate

better fit, taking into account model deviance and the effective

number of parameters in the model) [29]. See Text S1, section

‘‘Parameter estimation’’ for further details about model fitting and

checking of model convergence.

The final fit of the model to the data was evaluated by means of

mixed posterior predictive checks [30,31]. In this procedure, the

number of individuals positive for mf and nodules in each village

was resampled 40,000 times from the estimated joint posterior

distribution of model parameters, including resampling of all

Figure 1. Locations of study sites.
doi:10.1371/journal.pntd.0002168.g001

Onchocerciasis: Nodule and mf Prevalence
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random effects, and the resulting replicate dataset was compared

to the original data.

Results

The median nodule prevalence in males aged $20 years was

58% (range: 2%–100%), and the median mf prevalence in the

population aged five years and above was 74% (4%–99%). The

median sample size for nodule prevalence in a village was 42

(range: 9–181). The median sample size for mf prevalence in a

village was 167 (33–727).

Nodule prevalence in adult males was strongly positively

correlated with mf prevalence in the general population (Table

S2). There was significant geographical variation in patterns of

nodule and mf prevalence; in a model without any coefficients for

bioclime, the DIC increased from 1918 to 1920 when error term ej

was omitted. Point estimates of ej were very similar for savanna

and forest areas, with the exception of Mbam, Cameroon (forest-

savanna mosaic), for which mf prevalence was relatively high

compared to other areas. In line with this, the model fit did not

improve when a fixed effect parameter for bioclime was added to

the model. However, the model fit improved significantly when

Figure 2. Association between prevalence of nodules in adult males and skin mf in the general population. Colored symbols represent
data from seven geographical areas. Colored ellipses indicate the 95% percentiles (Z = 1.96) of the predicted joint distributions of infection
prevalences within each geographical area, based on the estimated variances and correlation of observations within geographical areas. Black
symbols represent the mean infection prevalences in each of the geographical areas. The black ellipse represents the 95% percentile of the joint
distribution of mean infection prevalences in geographical areas, illustrating the deviating pattern in nodule and mf prevalence in Mbam, Cameroon
(black and brown crosshairs and brown ellipse). Predictions were based on a Bayesian hierarchical multivariate logistic regression model with a fixed
effect for Mbam, Cameroon, and random effects for other geographical areas.
doi:10.1371/journal.pntd.0002168.g002

Onchocerciasis: Nodule and mf Prevalence
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modeling the difference between Mbam and all other areas as a

fixed effect (DIC 1913 vs. DIC 1918), indicating that mf

prevalences in Mbam were significantly higher than those in

other areas (Table S2, Figure 2). After this adaptation of the

model, there was still significant variation in patterns of nodule

and mf prevalence between geographical areas due to other,

unmeasured variables (the DIC increased to 1921 when error term

ej was omitted). Further, there was considerable uncertainty in the

Figure 3. Predicted skin mf prevalence in the general population, given observed nodule prevalence in adult males. Symbols
represent observed data by geographical area. Within each set of regression lines, the middle and outer lines relate to the median and 95% Bayesian
credible intervals of the posterior predictive distribution, respectively (black set for areas all areas but Mbam; grey set for Mbam, the only forest-
savanna mosaic area). Predictions were made assuming that nodule prevalence was based on a sample of 30 adult males.
doi:10.1371/journal.pntd.0002168.g003

Figure 4. Comparison of observations (x-axis) versus model predictions (y-axis). The comparison was made by means of mixed posterior
predictive checks of the numbers of individuals with detectable microfilariae in the skin and adult males with nodules. The dotted diagonal line
represents the hypothetical perfect model fit. Error bars represent the 95% Bayesian prediction interval for the numbers of adult males with nodules
and individuals with detectable microfilariae in the skin each village, and should intersect with the diagonal line if the model fit is good.
doi:10.1371/journal.pntd.0002168.g004

Onchocerciasis: Nodule and mf Prevalence
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predictions for mf prevalence, based on nodule prevalence in a

sample of 30 males from a hypothetical village outside the dataset

(Figure 3).

Mixed posterior predictive checks showed that the model fitted

well to the data (Figure 4). Only three villages – all from different

regions, and all with relatively low infection levels compared to

other villages from the same region – deviated significantly from

the model predictions.

Discussion

We investigated the association between pre-control nodule

prevalence in adult males (aged $20 years) and pre-control mf

prevalence in the general population (aged $5 years). Our model

is the first to examine geographical variation due to bioclime and

other unmeasured variables, and to take account of measurement

error in nodule prevalence. Our results show that there is a strong

positive correlation between nodule and mf prevalence, but also

significant variation between geographical regions, which should

be taken into consideration when evaluating the prospects of

elimination and the burden of disease.

Our analysis showed significant geographical variation in

patterns of nodule and mf prevalence, though not related to

bioclimatic zones according to the classic forest vs. savanna

classification of onchocerciasis. In ‘forest’ areas – Lekié, Cameroon

(degraded forest) and Kigoyera parish, Uganda (forest) – the

patterns in nodule and mf prevalences did not differ much from

the pattern in savanna areas. Yet, we found that mf prevalence

levels in the general population were relatively higher in the only

forest-savanna mosaic area (Mbam, Cameroon), while nodule

prevalence in adult males levels were not significantly different.

There are several possible explanations for this pattern. Most

likely, the pattern in Mbam is explained by a different pattern in

age-dependent exposure to black flies’ bites. Both mf and nodule

prevalences in individuals under the age of twenty years were

relatively high in Mbam compared to the other areas in

Cameroon, especially in villages with relatively low nodule

prevalence in adult males (data not shown). This indicates that

individuals in Mbam experience relatively high exposure levels at a

young age. This might be explained by the presence of dense forest

in this region with relatively few narrow open spaces, which is

associated with higher dispersal of flies around the breeding sites

[32]. Therefore, exposure may not be concentrated near the

breeding sites, but may extend over the whole village. Related to

this, exposure may be less concentrated in adults (who frequently

spent time near the breeding sites, forest galleries for fishing, etc.),

but may be more equally distributed over all age groups. However,

dense forest may not be unique for Mbam, and may also be

present in other forest areas in our data set. Therefore, we can

only say that it may be important to consider age-dependent

patterns in exposure to black flies’ bites and their effect on

transmission when translating nodule prevalence data to mf

prevalence. We rule out demography and survey methods, as all

mf prevalences were standardized, the mean age of the sampled

men from Mbam was similar to that of men from the other

Cameroonian areas, methods for skin snipping and mf enumer-

ation were the same as in other Cameroonian areas and, in

addition, even conducted by the same person (MB performed all

skin snipping in Faro, Lekié, and Mbam, and 50% of skin snipping

in Vina valley). Furthermore, it is also unlikely that the forest sites

other than Mbam – Lekié and Kigoyera parish – harbor a savanna

parasite strain (instead of the assumed forest parasite strain) as this

is inconsistent with observed patterns of blindness in these areas

(forest pattern) [33,34]. Lastly, variation might have been caused

by parasite characteristics not related to the classic subdivision into

forest and savanna strains. Herder [35] concluded that the parasite

strains circulating in the Faro and Mbam areas were related but

distinct from the strains from Vina and Lekié, based on

phylogenetic linkage patterns. However, this pattern was not

confirmed by our analysis as the association between nodule and

mf prevalence in Faro was very similar to the other areas but

Mbam.

Our model could be used as a tool for assessing the prospects of

elimination of onchocerciasis or the burden of onchocercal disease

when pre-control nodule prevalence in adult males is the only

measure of infection available (as is the case for most of Africa).

With our model, an estimate of pre-control mf prevalence may be

derived from pre-control nodule prevalence data. Such an

estimate may be helpful for program planning, providing an

indication of minimum program duration (with regard to

prospects of elimination), and could be helpful in the interpretation

of ongoing epidemiological parasitological surveys that rely on the

skin snipping method (in terms of progress towards elimination).

Prospects of elimination may be evaluated by comparing the

model-derived estimate of mf prevalence to known trends of

infection levels in other foci with a similar history of mass

treatment, or by means of dynamic modeling of the effect of mass

treatments with ivermectin using onchocerciasis transmission

models such as ONCHOSIM [10,11,36] and others [37,38,39].

Progress towards elimination could be evaluated by comparing

current mf prevalences with model-derived estimates of pre-

control mf prevalence and predicted trends in infection levels

based on dynamical modeling. Likewise, the pre-control burden of

ocular and dermal morbidity in endemic areas may be estimated

based on literature data on the association between mf and disease

prevalence [7,8,9]. This would further allow assessment of the

impact of control activities on population health, especially when

combined with aforementioned dynamic models. If pre-control mf

prevalence were to be severely underestimated or overestimated

when derived from nodule prevalence data (due to measurement

error and geographical variation), this may have important

repercussions for the number of treatment rounds that is thought

to be required to reach elimination, or the estimated burden of

disease. Therefore, it is crucial to consider variation due to sample

size and geographical variation in patterns of nodule and mf

prevalence when doing this kind of assessment. Given the high

level of variation and consequent uncertainty in the association

between nodule and mf prevalence, translations should be made

carefully and critically evaluated. We recommend that translations

of village-level REMO data (based on samples of about 30 adult

males) to mf prevalence are made based on the black lines in

Figure 3 (which include uncertainty due to measurement error and

geographical variation). In case of suspected high exposure of

children to flies’ bites, it may be more appropriate to apply the

part of the model that mimics the observations in Mbam,

Cameroon (grey lines in Figure 3). For areas where infection

prevalence is known to be homogeneously distributed, REMO

samples from multiple villages could be pooled into a more precise

estimate of pre-control nodule prevalence in the area, allowing

more precise prediction of the pre-control mf prevalence. In Text

S1, section ‘‘Model application’’, we explain in more detail how

our model should be applied to convert nodule prevalence to mf

prevalence (e.g. how to make predictions for a group of villages).

In conclusion, we provide a tool to convert nodule prevalence in

adult males to mf prevalence in the general population, which

accounts for uncertainty due to measurement error and geo-

graphical variation. This tool allows interpretation of a large

amount of pre-control data on levels of infection in Africa which
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may a) be combined with information on coverage of mass

treatment to assess the feasibility of elimination of onchocerciasis

and b) enable estimation of disease burden. Furthermore, we

identified significant geographical variation in mf prevalence and

nodule prevalence patterns that warrants further investigation of

age-dependent transmission patterns of onchocerciasis.
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Table S1: Weights used to standardize prevalence of microfilariae in the skin. Standardization 
weights were based on the reference population of the Onchocerciasis Control Programme. 

Age Male Female 

5–9 0.091 0.078 

10–14 0.090 0.077 

15–29 0.129 0.138 

30–49 0.123 0.146 

≥ 50 0.063 0.064 
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Table S2. Model parameter estimates from Bayesian hierarchical multivariate logistic 
regression of infection prevalence data. The model predicts the joint distribution of prevalence of 
nodules in adult males (age ≥20) and presence of microfilariae (mf) in the skin of the general 
population (age ≥5). 

Parametera Interpretation Medianb Lower 
boundc 

Upper 
boundd 

 1,0
-1logit m  Average fraction of general population with mf in 

the skin (excluding Mbam) 
0.68 0.55 0.78 

 2,0
-1logit m   Average fraction of adult males with onchocercal 

nodules (excluding Mbam) 
0.51 0.36 0.67 

 1,1exp m  Odds ratio of presence of mf in the skin in Mbam 
compared to other areas 

4.17 1.04 16.69 

 2,1exp m  Odds ratio of presence of nodules in Mbam 
compared to other areas 

2.69 0.45 14.57 

1, mij  Standard deviation of log odds of presence of mf 
within geographical areas 

0.98 0.87 1.11 

2, mij  Standard deviation of log odds of presence of 
nodules within geographical areas 

0.89 0.77 1.03 

ij  Correlation of log odds of presence of nodules 
and mf within geographical areas 

0.84 0.77 0.90 

1, mj  Standard deviation of average log odds of 
presence of mf between geographical areas 

0.55 0.22 1.24 

2, mj  Standard deviation of average log odds of 
presence of nodules between geographical areas 

0.69 0.31 1.50 

j  Correlation of average log odds of presence of 
nodules and mf between geographical areas 

0.88 0.28 1.00 

specificity One minus the probability of misclassifying a 
subcutaneous nodule as onchocercal 

0.99 0.98 1.00 

a For ease of interpretation, parameter estimates have been transformed to an intuitive scale, where possible (inverse logit 
transformation for intercepts and exponents for other fixed effects parameters). See Appendix A for a detailed description of 
the model and its parameters. 
b Median of posterior distribution. 
c Defined as the 2.5th percentile of the posterior distribution. 
d Defined as the 97.5th percentile of the posterior distribution. 
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Model description 

The current study considers spatially clustered, bivariate binomially distributed data. For analysis of 

spatial data, there are geostatistical techniques that take account of the spatial correlation. These 

techniques require knowledge of the geographical coordinates of the data points, which were not fully 

available in our case. Instead, we used an ordinary hierarchical approach to model the data to account 

for spatial correlation. 

There are several popular alternatives for modeling bivariate binomially distributed data. Multivariate 

probit regression models have been proposed. These models are convenient in terms of 

computational requirements because they only quantify the correlation between observations, leaving 

variance at the lowest level of the data unidentified (but accounted for) [1]. Depending on the 

researcher’s objective, this can be considered an advantage (computationally less demanding) or a 

drawback (part of the model remains unidentified). Another drawback is that the interpretation of probit 

models may be less intuitive to some, if not many researchers. As a concession to these arguments, a 



 2 

reparameterization of the multivariate logistic regression model has been proposed, which like the 

probit model leaves the variance at the lowest level unidentified [1,2]. However, this reparameterized 

logistic model requires a customized sampling algorithm for efficient Markov chain Monte Carlo 

sampling. In our case, we chose for intuitive interpretation, quantification of all variances, and the use 

of the freely available and widely implemented Gibbs sampling algorithm, leading to the choice of 

generalizing the familiar logistic model as described below. 

The multivariate model used in this study is an extension of the hierarchical logistic regression model 

( )( ) jij
T
ijijijijijij nky εεββπ ++== X,,X|logit , where ijπ  is the probability of finding k  cases of the 

binomially distributed outcome y  in n  individuals from the i-th unit in the j-th cluster, conditional on a 

set of observed covariates ijX  and a set of model parameters β . The error terms ijε  and jε  

represent the variation within and between the j clusters of observation, respectively. We extended this 

model to simultaneously predict m binary outcomes, leading to 

( )( ) jijm
T
ijmijmijmijmijmij nky εεββπ ++== X,,X|logit ,,,, , where mij ,π  is the probability of observing 

k  cases of the m-th outcome (m = 1: presence of microfilariae in the skin; m = 2: presence of nodules 

in adult males) among mn  observed individuals from the i-th unit (village) in the j-th cluster 

(geographical area). Here, the error terms ijε  and jε  each consist of m components representing the 

variation in log odds of each of the m outcomes within and between the j clusters of observations. For 

each observation, there is a set of observed covariates ijX  (bioclime), and for each of the m predicted 

binary outcomes we have a set model parameters mβ . In our case, the intercepts 1,0 =mβ  and 2,0 =mβ  

represent the mean log odds of presence of mf and nodule in the data, respectively. The parameters 

1,1 =mβ  and 2,1 =mβ  represent the log odds ratio of observing presence of microfilariae in the skin and 

subcutaneous onchocercal nodules in a certain bioclime, respectively, relative to a reference bioclime 

(multiple sets of such parameter can be added to stratify the analysis by multiple bioclimes and/or 

other characteristics). Correlation between onchocercal nodule and mf prevalence was modeled by 

assuming multivariate normal (MVN) distributions for the error terms: ( )
ijij

MVNij εεµε Σ,~  and 

( )
jj

MVNj εεµε Σ,~ , with ( )0,0==
jij εε µµ . Here, 

ijεΣ  and 
jεΣ  are variance-covariance matrices 

with size m x m, containing along the diagonal the marginal variances of the errors for the log odds of 
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presence of nodules and mf within ( 2
1, =mijσ  and 2

2, =mijσ ) and between ( 2
1, =mjσ  and 2

2, =mjσ ) the j 

clusters of observations. The off-diagonal positions of 
ijεΣ  and 

jεΣ  hold the covariances 2;1, == mmijσ  

and 2;1, == mmjσ  of error terms within and between the j clusters, respectively. The correlation between 

log odds of presence of nodules and mf at village-level ijρ  was derived by 
2,1,

2;1,

==

==

mijmij

mmij

σσ
σ

. Correlation 

jρ  was derived in a similar fashion, and can be interpreted in two ways; 1) together with variances 

2
1, =mjσ  and 2

2, =mjσ , jρ  represents how the association between onchocercal nodule and mf 

prevalences varies between geographical regions due to e.g. environmental factors and surveys 

methods (analogous to linear regression models with a random intercept); 2) jρ  is the correlation 

between the mean log odds of presence of nodules and mf in a geographical area (as defined for the 

data in this study). 

Parameter estimation 

Model parameters were estimated assuming non-informative prior distributions. For fixed effects 

parameters mβ , we assumed independent normal prior distributions ( )1000,0
m

Nβ . The village-level 

variance-covariance matrix 
ijεΣ  was estimated assuming a scaled Wishart prior distribution ( )kRWm ,  

for its inverse 1−Σ
ijε , where R  is the m x m identity matrix mI , and k  is the number of degrees of 

freedom (set to 3, effectively assuming uniform prior information on ijρ ). To maximize the speed of 

model convergence, the variance-covariance matrix 
jεΣ  for differences between geographical areas 

was hierarchically centered around fixed effects mβ , and was estimated assuming independent 

uniform prior distributions for the correlation ( ( )1,1~ −Ujρ ), and standard deviations 

( ( )10,0~, Umjσ  or ( )100,0~, Umjσ ), in line with previous recommendations for estimating 

hyperparameters [3]. The prior distribution for minimum sensitivity of nodule palpation (at low 

endemicity levels) was defined as being uniform between 60% and 100%. The prior distribution for 

specificity of nodule palpation was defined as being uniform between 98% and 100%. 
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Figure A1. Autocorrelation plots of Monte Carlo samples for nine parameters. In this study, 

autocorrelation was initially high for some parameters, indicating that the Gibbs sampling algorithm 

was slow in exploring the posterior distribution of these parameters. Autocorrelation was reduced by 

storing only every 20th Monte Carlo sample and running 200,000 iterations (after discarding an initial 

200,000 iterations for burn-in), for which the results are shown here. After this, autocorrelation of 

Monte Carlo samples was similarly low for all parameters and Markov chains. 

 

 

Model parameters were estimated using four Markov chains with each 400,000 Monte Carlo 

simulations. For each chain, the first 200,000 of the saved simulations were considered as burn-in 

simulations and discarded. Such a number of simulations was necessary as the Gibbs sampler 

explored the joint posterior distribution of parameters slowly, indicated by high autocorrelation of 

Monte Carlo samples. To save storage space, only every 20th Monte Carlo sample was stored, 
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effectively reducing autocorrelation (Figure A1). The effective amount of simulations per parameter 

was 40,000 (sum of four Markov chains). The point estimate for each parameter and prediction were 

taken to be the median of the 40,000 simulations. Ninety five percent Bayesian credible intervals were 

calculated as the 2.5th and 97.5th percentiles of the simulations. 

Model convergence was assessed by checking whether the four Markov chains converged to 

the same posterior distribution for each parameter, based on Gelman and Rubin’s convergence 

diagnostic, the potential scale reduction factor (which should be below 1.1; i.e. a posterior credible 

interval of a parameter estimate should not become more than 10% narrower if more Monte Carlo 

samples were drawn) [4]. Because this diagnostic test requires that starting values for each parameter 

in each Markov Chain are over-dispersed with respect to the true posterior distribution of a parameter, 

we assigned heavily over-dispersed initial values to each of the model parameters in each chain (e.g. 

the initial values 1, 10, 50, and 100 for a parameter with an uninformative normal distribution as prior, 

one value for each Markov chain). In our simulations, the potential scale reduction factor was at or 

below 1.001 for all parameters. Furthermore, we checked that all Markov chains arrived in the joint 

posterior distribution of parameter values, as determined by means of Geweke’s test, which compares 

the distribution of the first 10% and last 50% of the Monte Carlo samples within a chain [5]. We also 

checked that Monte Carlo errors were small, relative to the point estimate of each parameter 

(difference of at least factor 100 – 1000). 

Model application 

Given estimates of mβ , 
ijεΣ , and 

jεΣ , we estimated the conditional distribution of mf prevalence 

*
2,

*
1, | == mijmij ππ  in a hypothetical village i from an unspecified region j outside the dataset, given an 

estimate of the ‘true’ onchocercal nodule prevalence in adult males, corrected for misclassification of 

nodules, in the same hypothetical village (assuming this is exactly known). Given that we are working 

with multivariate normal distributions, the conditional distribution for *
2,

*
1, | == mijmij ππ  can be described 

as 

( ) ( )( ) ( )













−−+ ===

=

=
===

2
1,

2
2

*
2,

2,

1,*
1

*
2,

*
1, 1,XlogitX~|logit mijijm

T
ijmijij

mij

mij
m

T
ijmijmij N σρβπρ

σ
σ

βππ , where 

( )( )2
1,

2
1

*
1 1,~ === − mjjmm N σρββ . To include uncertainty about nodule prevalence *

2, =mijπ  in the 
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prediction of mf prevalence *
1, =mijπ , we simulated values from the estimated distribution of 

( )*
2,logit =mijπ , and fed these into the distribution for ( )*

2,
*

1, |logit == mijmij ππ , from which values for 

*
1, =mijπ  were then simulated. As this was done while simultaneously estimating the values of model 

parameters by means of Markov Chain Monte Carlo sampling, all uncertainty in the model parameter 

estimates was carried through to the final predictions for mf prevalence in hypothetical villages. 

It should be noted that the procedure described above produces predictions pertaining to 

individual villages only, and therefore will produce predictions containing a great deal of uncertainty. 

The amount of uncertainty would be substantially lower if predictions were made based on larger 

samples of adult males, or when made for the mean prevalence of infection in a group of villages. 

However, a prediction for a mean prevalence would ignore possible heterogeneity in infection 

prevalences between villages, which may lead to overly optimistic estimates when e.g. when 

assessing prospects of elimination (the most highly endemic village will determine the required 

duration of an intervention, not the mean prevalence in a region). Nevertheless, if such predictions are 

made (e.g. for a group of villages with known similar levels of infection), or concerning many villages 

(theoretically an infinite number of villages), the mean mf prevalence is described by 

( )( )2
*

2,
2,

1,*
1 XlogitX ==

=

=
= −+ m

T
ijmijij

mij

mij
m

T
ij βπρ

σ
σ

β , where *
2, =mijπ  is the mean nodule prevalence in the 

group of villages (including uncertainty related to overall sample size). However, usually the number of 

sampled villages is not very high (<1,000, meaning that the denominator of the standard error of the 

mean is <30, approx. the square root of 1,000), and one should therefore simulate the mf prevalence 

separately for every village, sampling village-level error independently for every village, and sampling 

the region-level error simultaneously for all villages. Then, for every set of many repeated simulations 

(i.e. a set consisting of one simulation for each village), the investigator can calculate the mean or any 

other summary statistic of the level of infection in the group of villages (e.g. range or variance), arriving 

at a distribution for the estimated mean or another summary statistic for mf prevalence in a group of 

villages. 
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Model specification in JAGS 

for (i in 1:N) { 

 # Likelihood of nodule data 

 k.nod[i] ~ dbin(sens.nod.p[i] * p.nod[i] + (1-spec.nod)*(1-p.nod[i]), n.nod[i]) 

 sens.nod.p[i] <- sens.nod + (1-sens.nod)*p.nod[i] 

 logit(p.nod[i]) <- B0[region[i],1] + e.vill[i,1] 

  

 # Likelihood of mf data 

 k.mf[i] ~ dbin(p.mf[i],n.mf[i]) 

 logit(p.mf[i]) <- B0[region[i],2] + e.vill[i,2] 

  

 # Correlation of nodule and mf data with regions 

 e.vill[i,1] <- e.vill.raw[i,1] * xi.nod 

 e.vill[i,2] <- e.vill.raw[i,2] * xi.mf 

 e.vill.raw[i,1:2] ~ dmnorm(Mu,Sigma2.inv.raw) 

} 

 

# Priors for fixed effects 

sens.nod ~ dunif( [some value] ,1.0) # [some value] = 0.6, 0.8, or 1.0 (final model) 

spec.nod ~ dunif(0.98 ,1) 

b0.nod ~ dnorm(0,0.001) 

b0.mf ~ dnorm(0,0.001) 

mbam.nod ~ dnorm(0,0.001) 

mbam.mf ~ dnorm(0,0.001) 

 

# Uniform prior for correlation and marginal standard deviations  

# of hierarchically centered random region effects 

for (j in 1:7) { 

 B0[j,1:2] ~ dmnorm(Mu.region[j,1:2],Sigma2.region.inv) 

 Mu.region[j,1] <- b0.nod + mbam.nod*equals(j,2) 

 Mu.region[j,2] <- b0.mf + mbam.mf*equals(j,2) 

} 

Sigma2.region.inv <- inverse(Sigma2.region) 

Sigma2.region[1,1] <- sigma2.nod.region 

Sigma2.region[2,2] <- sigma2.mf.region 

Sigma2.region[1,2] <- covar.nod.mf.region 

Sigma2.region[2,1] <- covar.nod.mf.region 

covar.nod.mf.region <- rho.region * sigma.nod.region * sigma.mf.region 

sigma2.nod.region <- pow(sigma.nod.region,2) 

sigma2.mf.region <- pow(sigma.mf.region,2) 

sigma.nod.region ~ dunif(0,10) 

sigma.mf.region ~ dunif(0,10) 

rho.region ~ dunif(-1,1) 

 

# Scaled inverse Wishart prior for random village effects 

Sigma2.inv.raw ~ dwish(R,scale) 

xi.nod ~ dunif(0,100) 

xi.mf ~ dunif(0,100)  

Sigma2.raw <- inverse(Sigma2.inv.raw) 

sigma.nod <- pow(Sigma2.raw[1,1],0.5) * xi.nod 

sigma.mf <- pow(Sigma2.raw[2,2],0.5) * xi.mf 

rho <- Sigma2.raw[1,2]/sqrt(Sigma2.raw[1,1]*Sigma2.raw[2,2]) 

 

Sigma2[1,1] <- pow(sigma.nod,2) 

Sigma2[1,2] <- rho * sigma.nod * sigma.mf 

Sigma2[2,1] <- Sigma2[1,2] 

Sigma2[2,2] <- pow(sigma.mf,2) 



 8 

 

# Predictions for REMO samples 

sigma2.mf.REMO <- (1 - rho^2) * pow(sigma.mf,2) 

sigma2.mf.REMO.region <- (1 - rho.region^2) * sigma2.mf.region 

tau.mf.REMO <- pow(sigma2.mf.REMO,-1) 

tau.mf.REMO.region <- pow(sigma2.mf.REMO.region,-1)  

 

for (k in 1:N.REMO) { 

 # Hypothetical REMO village: nodule prevalence 

 k.nod.REMO[k] ~ dbin(sens.nod.p.REMO[k] * p.nod.REMO[k] +  

(1-spec.nod)*(1-p.nod.REMO[k]),n.nod.REMO[k]) 

 sens.nod.p.REMO[k] <- sens.nod + (1-sens.nod)*p.nod.REMO[k] 

 logit(p.nod.REMO[k]) <- b.nod.REMO[k] 

 b.nod.REMO[k] ~ dnorm(0,0.001) 

  

 # Hypothetical REMO village: mf prevalence (non-mosaic) 

 logit(p.mf.REMO.vill[k]) <- b.mf.REMO.vill[k] 

 b.mf.REMO.vill[k] ~ dnorm(b0.mf.REMO.region[k],tau.mf.REMO) 

 b0.mf.REMO.region[k] <- b0.mf.REMO.intercept[k] + 

(sigma.mf/sigma.nod) * rho * (b.nod.REMO[k] - b0.nod) 

 b0.mf.REMO.intercept[k] ~ dnorm(b0.mf,tau.mf.REMO.region) 

  

 # Hypothetical REMO village: mf prevalence (mosaic) 

 logit(p.mf.REMO.vill.mosaic[k]) <- b.mf.REMO.mosaic.vill[k] 

 b.mf.REMO.mosaic.vill[k] ~ dnorm(b0.mf.REMO.mosaic.region[k],tau.mf.REMO) 

 b0.mf.REMO.mosaic.region[k] <- b0.mf.REMO.mosaic.intercept[k] + 

(sigma.mf/sigma.nod) * rho * (b.nod.REMO[k] - (b0.nod + mbam.nod)) 

 b0.mf.REMO.mosaic.intercept[k] ~ dnorm((b0.mf + mbam.mf),tau.mf.REMO.region) 

} 
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