6,370 research outputs found

    Toward a homogeneous set of transiting planet parameters

    Full text link
    With 40 or more transiting exoplanets now known, the time is ripe to seek patterns and correlations among their observed properties, which may give important insights into planet formation, structure, and evolution. This task is made difficult by the widely different methodologies that have been applied to measure their properties in individual cases. Furthermore, in many systems our knowledge of the planet properties is limited by the knowledge of the properties of the parent stars. To address these difficulties we have undertaken the first comprehensive analysis of the data for 23 transiting planets using a uniform methodology. We revisit several of the recently proposed correlations, and find new ones involving the metallicity of the parent stars.Comment: 4 pages including figures. To appear in Proceedings of IAU Symposium 253, "Transiting Planets", May 2008, Cambridge, M

    Sodium Absorption From the Exoplanetary Atmosphere of HD189733b Detected in the Optical Transmission Spectrum

    Get PDF
    We present the first ground-based detection of sodium absorption in the transmission spectrum of an extrasolar planet. Absorption due to the atmosphere of the extrasolar planet HD189733b is detected in both lines of the NaI doublet. High spectral resolution observations were taken of eleven transits with the High Resolution Spectrograph (HRS) on the 9.2 meter Hobby-Eberly Telescope (HET). The NaI absorption in the transmission spectrum due to HD189733b is (-67.2 +/- 20.7) x 10^-5 deeper in the ``narrow'' spectral band that encompasses both lines relative to adjacent bands. The 1-sigma error includes both random and systematic errors, and the detection is >3-sigma. This amount of relative absorption in NaI for HD189733b is ~3x larger than detected for HD209458b by Charbonneau et al. (2002), and indicates these two hot-Jupiters may have significantly different atmospheric properties.Comment: 12 pages, 2 figures; Accepted for publication in ApJ Letter

    Orbital Orientations of Exoplanets: HAT-P-4b is Prograde and HAT-P-14b is Retrograde

    Get PDF
    We present observations of the Rossiter-McLaughlin effect for two exoplanetary systems, revealing the orientations of their orbits relative to the rotation axes of their parent stars. HAT-P-4b is prograde, with a sky-projected spin-orbit angle of lambda = -4.9 +/- 11.9 degrees. In contrast, HAT-P-14b is retrograde, with lambda = 189.1 +/- 5.1 degrees. These results conform with a previously noted pattern among the stellar hosts of close-in giant planets: hotter stars have a wide range of obliquities and cooler stars have low obliquities. This, in turn, suggests that three-body dynamics and tidal dissipation are responsible for the short-period orbits of many exoplanets. In addition, our data revealed a third body in the HAT-P-4 system, which could be a second planet or a companion star.Comment: AJ, in press [8 pages

    Resolving the Surfaces of Extrasolar Planets With Secondary Eclipse Light Curves

    Full text link
    We present a method that employs the secondary eclipse light curves of transiting extrasolar planets to probe the spatial variation of their thermal emission. This technique permits an observer to resolve the surface of the planet without the need to spatially resolve its central star. We evaluate the feasibility of this technique for the HD 209458 system [..]. We consider two representations of the planetary thermal emission; a simple model parameterized by a sinusoidal dependence on longitude and latitude, as well as the results of a three-dimensional dynamical simulation of the planetary atmosphere previously published by Cooper & Showman. We find that observations of the secondary eclipse light curve are most sensitive to a longitudinal offset in the geometric and photometric centroids of the hemisphere of the planet visible near opposition. To quantify this signal, we define a new parameter, the ``uniform time offset,'' which measures the time lag between the observed secondary eclipse and that predicted by a planet with a uniform surface flux distribution. We compare the predicted amplitude of this parameter for HD 209458 with the precision with which it could be measured with IRAC. We find that IRAC observations at 3.6um a single secondary eclipse should permit sufficient precision to confirm or reject the Cooper & Showman model of the surface flux distribution for this planet. We quantify the signal-to-noise ratio for this offset in the remaining IRAC bands (4.5um, 5.8um, and 8.0um), and find that a modest improvement in photometric precision (as might be realized through observations of several eclipse events) should permit a similarly robust detection.Comment: AASTeX 5.2, 24 pages, 5 figures, accepted for publication in ApJ; v2: clarifications, updated to version accepted by ApJ; v3: try to reduce spacin

    Twenty-One New Light Curves of OGLE-TR-56b: New System Parameters and Limits on Timing Variations

    Get PDF
    Although OGLE-TR-56b was the second transiting exoplanet discovered, only one light curve, observed in 2006, has been published besides the discovery data. We present twenty-one light curves of nineteen different transits observed between July 2003 and July 2009 with the Magellan Telescopes and Gemini South. The combined analysis of the new light curves confirms a slightly inflated planetary radius relative to model predictions, with R_p = 1.378 +/- 0.090 R_J. However, the values found for the transit duration, semimajor axis, and inclination values differ significantly from the previous result, likely due to systematic errors. The new semimajor axis and inclination, a = 0.01942 +/- 0.00015 AU and i = 73.72 +/- 0.18 degrees, are smaller than previously reported, while the total duration, T_14 = 7931 +/- 38 s, is 18 minutes longer. The transit midtimes have errors from 23 s to several minutes, and no evidence is seen for transit midtime or duration variations. Similarly, no change is seen in the orbital period, implying a nominal stellar tidal decay factor of Q_* = 10^7, with a three-sigma lower limit of 10^5.7.Comment: 14 pages, 5 figures, accepted to Ap

    HATS-1b: The First Transiting Planet Discovered by the HATSouth Survey

    Full text link
    We report the discovery of HATS-1b, a transiting extrasolar planet orbiting the moderately bright V=12.05 G dwarf star GSC 6652-00186, and the first planet discovered by HATSouth, a global network of autonomous wide-field telescopes. HATS-1b has a period P~3.4465 d, mass Mp~1.86MJ, and radius Rp~1.30RJ. The host star has a mass of 0.99Msun, and radius of 1.04Rsun. The discovery light curve of HATS-1b has near continuous coverage over several multi-day periods, demonstrating the power of using a global network of telescopes to discover transiting planets.Comment: Submitted to AJ 10 pages, 5 figures, 6 table

    A Prograde, Low-Inclination Orbit for the Very Hot Jupiter WASP-3b

    Get PDF
    We present new spectroscopic and photometric observations of the transiting exoplanetary system WASP-3. Spectra obtained during two separate transits exhibit the Rossiter-McLaughlin (RM) effect and allow us to estimate the sky-projected angle between the planetary orbital axis and the stellar rotation axis, lambda = 3.3^{+2.5}_{-4.4} degrees. This alignment between the axes suggests that WASP-3b has a low orbital inclination relative to the equatorial plane of its parent star. During our first night of spectroscopic measurements, we observed an unexpected redshift briefly exceeding the expected sum of the orbital and RM velocities by 140 m/s. This anomaly could represent the occultation of material erupting from the stellar photosphere, although it is more likely to be an artifact caused by moonlight scattered into the spectrograph.Comment: 23 pages, 4 figures, Accepted for publication in The Astrophysical Journal, Replacement includes revised citation

    The Apparently Decaying Orbit of WASP-12

    Get PDF
    We present new transit and occultation times for the hot Jupiter WASP-12b. The data are compatible with a constant period derivative: P˙=29±3\dot{P}=-29 \pm 3 ms yr1^{-1} and P/P˙=3.2P/\dot{P}= 3.2 Myr. However, it is difficult to tell whether we have observed orbital decay, or a portion of a 14-year apsidal precession cycle. If interpreted as decay, the star's tidal quality parameter QQ_\star is about 2×1052\times 10^5. If interpreted as precession, the planet's Love number is 0.44±0.100.44\pm 0.10. Orbital decay appears to be the more parsimonious model: it is favored by Δχ2=5.5\Delta\chi^2=5.5 despite having two fewer free parameters than the precession model. The decay model implies that WASP-12 was discovered within the final \sim0.2% of its existence, which is an unlikely coincidence but harmonizes with independent evidence that the planet is nearing disruption. Precession does not invoke any temporal coincidence, but does require some mechanism to maintain an eccentricity of \approx0.002 in the face of rapid tidal circularization. To distinguish unequivocally between decay and precession will probably require a few more years of monitoring. Particularly helpful will be occultation timing in 2019 and thereafter.Comment: 10 pages [AAS journals, in press, note added in proof
    corecore