
The Apparently Decaying Orbit of WASP-12b

Kishore C. Patra1, Joshua N. Winn2, Matthew J. Holman3, Liang Yu1, Drake Deming4, and Fei Dai1,2
1 Department of Physics, and Kavli Institute for Astrophysics and Space Research,

Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2 Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08540, USA

3 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
4 Department of Astronomy, University of Maryland at College Park, College Park, MD 20742, USA
Received 2017 March 19; revised 2017 April 13; accepted 2017 April 14; published 2017 June 9

Abstract

We present new transit and occultation times for the hot Jupiter WASP-12b. The data are compatible with a
constant period derivative: P 29 3= - ˙ msyr−1 and P P 3.2 Myr=˙ . However, it is difficult to tell whether we
have observed orbital decay or a portion of a 14-year apsidal precession cycle. If interpreted as decay, the star’s
tidal quality parameter Q is about 2 105´ . If interpreted as precession, the planet’s Love number is 0.44±0.10.
Orbital decay appears to be the more parsimonious model: it is favored by 5.52cD = despite having two fewer
free parameters than the precession model. The decay model implies that WASP-12 was discovered within the final
∼0.2% of its existence, which is an unlikely coincidence but harmonizes with independent evidence that the planet
is nearing disruption. Precession does not invoke any temporal coincidence, but it does require some mechanism to
maintain an eccentricity of 0.002» in the face of rapid tidal circularization. To distinguish unequivocally between
decay and precession will probably require a few more years of monitoring. Particularly helpful will be occultation
timing in 2019 and thereafter.
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1. Introduction

More than 20 years have elapsed since the discovery of hot
Jupiters (Mayor & Queloz 1995). The time may be ripe to
confirm a long-standing theoretical prediction: the orbits of
almost all of these planets should be shrinking due to tidal
orbital decay (Rasio et al. 1996; Sasselov 2003; Levrard
et al. 2009). This is because the star’s rotational angular
momentum is typically smaller than one-third of the orbital
angular momentum, the critical value beneath which tidal
evolution has no stable equilibrium (Hut 1980).

Tidal decay of hot Jupiters has been invoked to explain
certain properties of the ensemble of star-planet systems. For
example, the scarcity of gas giants with periods less than a day
is suggestive of orbital decay (see, e.g., Jackson et al. 2008;
Hansen 2010; Penev et al. 2012; Ogilvie 2014). The
anomalously rapid rotation of some hot-Jupiter host stars has
been attributed to transfer of the planet’s orbital angular
momentum (Penev et al. 2016). The absence of hot Jupiters
around subgiant stars may be caused by an acceleration of
orbital decay when a star leaves the main sequence (Villaver &
Livio 2009; Hansen 2010; Schlaufman & Winn 2013). Tidal
decay might also be responsible for the lower occurrence of
close-in planets around rapidly rotating stars (Teitler &
Königl 2014) or the realignment of stars and their planetary
orbits (Matsakos & Königl 2015). However, direct evidence for
orbital decay has been lacking: there have been no clear
demonstrations of a long-term period decrease due to orbital
decay (see, e.g., Hoyer et al. 2016; Wilkins et al. 2017).

Another unfulfilled prediction is that the orbits of hot
Jupiters should be apsidally precessing on a timescale of
decades (Miralda-Escudé 2002; Heyl & Gladman 2007; Jordán
& Bakos 2008; Pál & Kocsis 2008), as long as the orbits are at
least slightly eccentric. In particular, Ragozzine & Wolf (2009)
noted that the theoretical precession rate is dominated by the
contribution from the planet’s tidally deformed mass

distribution. They advocated a search for apsidal precession
as a means of probing the interiors of hot Jupiters.
With an orbital period of 1.09 days, WASP-12b is one of the

shortest-period giant planets known (Hebb et al. 2009) and has
been monitored for a decade. It is, therefore, an outstanding
target in the search for orbital decay and apsidal precession.
Maciejewski et al. (2016) reported a decrease in the apparent
period. Despite being the most convincing claim that has yet
been presented for orbital decay, those authors could not
distinguish between true period shrinkage and a long-term
oscillation of the apparent period due to apsidal precession. In
this paper, we present new transit and occultation times
(Sections 2 and 3). We use all of the available data to test which
model is favored by the data: a constant period derivative or
sinusoidal variations arising from apsidal precession
(Section 4). We also discuss the implications of both models
(Section 5) and prospects for future observations (Section 6).

2. New Transit Times

Between 2016 October and 2017 February, we observed
seven transits of WASP-12 with the 1.2 m telescope at the Fred
Lawrence Whipple Observatory on Mt. Hopkins, Arizona.
Images were obtained with the KeplerCam detector through a
Sloan r¢-band filter. The typical exposure time was 15 s, chosen
to give a signal-to-noise ratio of about 200 for WASP-12. The
field of view of this camera is 23 1 on a side. We used 2×2
binning, giving a pixel scale of 0 68.
The raw images were processed by performing standard

overscan correction, debiasing, and flat-fielding with IRAF.5

Aperture photometry was performed for WASP-12 and an
ensemble of 7–9 comparison stars of similar brightness. The
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5 The Image Reduction and Analysis Facility (IRAF) is distributed by the
National Optical Astronomy Observatory, which is operated by the Association
of Universities for Research in Astronomy (AURA) under a cooperative
agreement with the National Science Foundation.
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aperture radius was chosen to give the smallest scatter in
the flux outside of the transits and was generally 7–8 pixels.
The reference signal was generated by summing the flux of the
comparison stars. The flux of WASP-12 was then divided by
this reference signal to produce a time series of relative flux.
Each time series was normalized to have unit flux outside of the
transit. The time stamps were placed on the BJDTDB system
using the code of Eastman et al. (2010).

We fitted a Mandel & Agol (2002) model to the data from
each transit. The parameters of the transit model were the
midtransit time, the planet-to-star radius ratio (R Rp ), the
scaled stellar radius (R a ), and the impact parameter
(b a i Rcos = ). For given values of R a and b, the transit
timescale is proportional to the orbital period (see, e.g.,
Equation (19) of Winn 2010). To set this timescale, we held the
period fixed at 1.09142days, although the individual transits
were fitted separately with no requirement for periodicity. To
correct for differential extinction, we allowed the apparent
magnitude to be a linear function of airmass, giving two
additional parameters. The limb darkening law was assumed to
be quadratic, with coefficients held fixed at the values
(u 0.321 = , u 0.322 = ) tabulated by Claret & Bloemen
(2011) for a star with the spectroscopic parameters given by
Hebb et al. (2009).6

To determine the credible intervals for the parameters, we
used the emcee Markov Chain Monte Carlo (MCMC) code
written by Foreman-Mackey et al. (2013). The transition
distribution was proportional to exp 22c-( ) with
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where f iobs, is the observed flux at time ti and f icalc, is the
corresponding flux of the model. The uncertainties is were set
equal to the standard deviation of the out-of-transit data. In a
few cases, the pre-ingress scatter was noticeably different than
the post-egress scatter; for those observations, we assigned is
by linear interpolation between the pre-ingress and post-egress
values.

Figure 1 shows the light curves and the best-fit models.
Table 1 reports the midtransit times and their uncertainties. For
convenience, this table also includes the new occultation times
described below, as well as the previously reported times that
are analyzed in Section 4. The results for the other transit
parameters were consistent with the previous results of
Maciejewski et al. (2013), though with larger uncertainties.

Time-correlated noise is evident in some of the new light
curves. Although we made no special allowance for these
correlations in our analysis, we have reason to believe that the
quoted uncertainties are reliable. When these seven new
midtransit times are fitted with a linear function of epoch, we
obtain 5.1min

2c = with five degrees of freedom. When the
period is held fixed at the value derived from all 10 years of
timing data, we obtain 7.8min

2c = with six degrees of freedom.
These tests suggest that the uncertainties are not substantially
underestimated. Furthermore, spurious timing variations would
be random from night to night, whereas our long-term timing
analysis (Section 4) reveals that all seven new midtransit times
produce residuals of the same sign and amplitude.

3. New Occultation Times

We measured two new occultation times based on hitherto
unpublished Spitzer observations in 2013 December (program
90186, P.I. Todorov). Two different transits were observed, one
at 3.6 μm and one at 4.5 μm. The data take the form of a time
series of 32×32-pixel subarray images, with an exposure time
of 2.0 s per image. The data were acquired over a wide range of
orbital phases, but for our purpose, we analyzed only the
≈14,000 images within 4 hr of each occultation. We also re-
analyzed the Spitzer occultation presented by Deming et al.
(2015) using the technique described below.
We determined the background level in each image by fitting

a Gaussian function to the histogram of pixel values, after
excluding the high flux values associated with the star. The
centroid of the fitted Gaussian function was taken to be the
background value and was subtracted from each image prior to
performing aperture photometry.
We used two different schemes to choose photometric

aperture sizes. In the first scheme, we used 11 apertures ranging
in radius from 1.6–3.5 pixels in average increments of

Figure 1. New transit light curves. Black points are based on observations with
the FLWO1.2 m telescope in the Sloan r¢ band. Red curves are the best-fit
models. Epoch numbers are printed to the right of each curve. Vertical offsets
have been applied to separate the light curves.

6 For this purpose we used the online code of Eastman et al. (2013): http://
astroutils.astronomy.ohio-state.edu/exofast/limbdark.shtml.
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Table 1
Transit and Occultation Times

Type of Midpoint Uncertainty Epoch
event (BJDTDB) (days) number

tra 2454515.52496 0.00043 −1640 Hebb et al. (2009)a

occ 2454769.28131 0.00080 −1408 Campo et al. (2011)
occ 2454773.64751 0.00060 −1404 Campo et al. (2011)
tra 2454836.40340 0.00028 −1346 Copperwheat et al. (2013)
tra 2454840.76893 0.00062 −1342 Chan et al. (2011)
tra 2455140.90981 0.00042 −1067 Collins et al. (2017)
tra 2455147.45861 0.00043 −1061 Maciejewski et al. (2013)
tra 2455163.83061 0.00032 −1046 Collins et al. (2017)
tra 2455172.56138 0.00036 −1038 Chan et al. (2011)
occ 2455194.93381 0.00100 −1018 Croll et al. (2015)
occ 2455202.57566 0.00220 −1011 Föhring et al. (2013)
tra 2455209.66895 0.00046 −1004 Collins et al. (2017)
tra 2455210.76151 0.00041 −1003 Collins et al. (2017)
tra 2455230.40669 0.00019 −985 Maciejewski et al. (2013)
tra 2455254.41871 0.00043 −963 Maciejewski et al. (2013)
tra 2455494.52999 0.00072 −743 Maciejewski et al. (2013)
tra 2455498.89590 0.00079 −739 Sada et al. (2012)
tra 2455509.80971 0.00037 −729 Collins et al. (2017)
tra 2455510.90218 0.00031 −728 Collins et al. (2017)
occ 2455517.99455 0.00118 −722 Deming et al. (2015)b

tra 2455518.54070 0.00040 −721 Cowan et al. (2012)
tra 2455542.55210 0.00040 −699 Cowan et al. (2012)
tra 2455542.55273 0.00028 −699 Maciejewski et al. (2013)
tra 2455566.56385 0.00028 −677 Maciejewski et al. (2013)
occ 2455576.93141 0.00090 −668 Croll et al. (2015)
occ 2455587.84671 0.00170 −658 Croll et al. (2015)
tra 2455590.57561 0.00068 −655 Maciejewski et al. (2013)
tra 2455598.21552 0.00035 −648 Maciejewski et al. (2013)
tra 2455600.39800 0.00029 −646 Maciejewski et al. (2013)
tra 2455601.49010 0.00024 −645 Maciejewski et al. (2013)
tra 2455603.67261 0.00029 −643 Collins et al. (2017)
tra 2455623.31829 0.00039 −625 Maciejewski et al. (2013)
tra 2455876.52786 0.00027 −393 Maciejewski et al. (2013)
tra 2455887.44198 0.00021 −383 Maciejewski et al. (2013)
tra 2455888.53340 0.00027 −382 Maciejewski et al. (2013)
tra 2455890.71635 0.00024 −380 Maciejewski et al. (2013)
tra 2455903.81357 0.00032 −368 Collins et al. (2017)
occ 2455910.90841 0.00130 −362 Crossfield et al. (2012)
tra 2455920.18422 0.00031 −353 Maciejewski et al. (2013)
tra 2455923.45850 0.00022 −350 Maciejewski et al. (2013)
tra 2455924.00411 0.00210 −350 Croll et al. (2015)
tra 2455946.37823 0.00018 −329 Maciejewski et al. (2013)
occ 2455946.92231 0.00180 −329 Croll et al. (2015)
tra 2455947.47015 0.00017 −328 Maciejewski et al. (2013)
tra 2455948.56112 0.00033 −327 Maciejewski et al. (2013)
tra 2455951.83534 0.00011 −324 Stevenson et al. (2014)
tra 2455952.92720 0.00010 −323 Stevenson et al. (2014)
tra 2455959.47543 0.00017 −317 Maciejewski et al. (2013)
tra 2455960.56686 0.00032 −316 Maciejewski et al. (2013)
tra 2455970.38941 0.00039 −307 Maciejewski et al. (2013)
tra 2455971.48111 0.00035 −306 Maciejewski et al. (2013)
tra 2455982.39509 0.00034 −296 Maciejewski et al. (2013)
tra 2455983.48695 0.00035 −295 Maciejewski et al. (2013)
tra 2455984.57797 0.00032 −294 Collins et al. (2017)
tra 2455985.66975 0.00042 −293 Collins et al. (2017)
tra 2455996.58378 0.00037 −283 Collins et al. (2017)
tra 2456005.31533 0.00037 −275 Maciejewski et al. (2013)
tra 2456006.40637 0.00031 −274 Maciejewski et al. (2013)
tra 2456245.42729 0.00033 −55 Maciejewski et al. (2016)
tra 2456249.79404 0.00039 −51 Collins et al. (2017)
tra 2456273.80514 0.00030 −29 Collins et al. (2017)
tra 2456282.53584 0.00030 −21 Maciejewski et al. (2016)
tra 2456284.71857 0.00030 −19 Collins et al. (2017)
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0.2pixel. In the second scheme, we tried 11 apertures for
which the radius was allowed to vary at each time step, based on
the procedure described in Appendix A of Lewis et al. (2013). In
this procedure, the aperture radius is taken to be the sum of a
constant (ranging from 0–2 pixels) and the noise pixel radius,
defined as the square root of the ratio of the square of the total flux
integrated over all pixels and the sum of squared-fluxes of

individual pixels. The noise pixel radius is specific to each image
and allows for possible changes in the shape of the pixel response
function with position. We also tried two different methods to
choose the center of the apertures: fitting a two-dimensional
Gaussian function to the stellar image, and computing the flux-
weighted center-of-light. Hence, there were four versions of the
photometry: constant versus variable aperture radii, and Gaussian

Table 1
(Continued)

Type of Midpoint Uncertainty Epoch
event (BJDTDB) (days) number

tra 2456297.81605 0.00030 −7 Collins et al. (2017)
tra 2456302.18179 0.00046 −3 Maciejewski et al. (2016)
tra 2456305.45536 0.00024 0 Maciejewski et al. (2016)
tra 2456319.64424 0.00038 13 Collins et al. (2017)
tra 2456328.37556 0.00027 21 Maciejewski et al. (2016)
tra 2456329.46733 0.00029 22 Maciejewski et al. (2016)
tra 2456604.50489 0.00021 274 Maciejewski et al. (2016)
tra 2456605.59624 0.00030 275 Maciejewski et al. (2016)
tra 2456606.68760 0.00033 276 Maciejewski et al. (2016)
tra 2456607.77938 0.00071 277 Collins et al. (2017)
tra 2456629.60726 0.00019 297 Maciejewski et al. (2016)
tra 2456630.69917 0.00043 298 Maciejewski et al. (2016)
occ 2456638.88530 0.00110 305 this work
occ 2456642.15848 0.00141 308 this work
tra 2456654.71047 0.00034 320 Collins et al. (2017)
tra 2456659.07598 0.00034 324 Kreidberg et al. (2015)
tra 2456662.35014 0.00019 327 Maciejewski et al. (2016)
tra 2456663.44136 0.00019 328 Maciejewski et al. (2016)
tra 2456664.53256 0.00031 329 Maciejewski et al. (2016)
tra 2456674.35560 0.00028 338 Kreidberg et al. (2015)
tra 2456677.63039 0.00032 341 Collins et al. (2017)
tra 2456688.54384 0.00040 351 Maciejewski et al. (2016)
tra 2456694.00161 0.00029 356 Kreidberg et al. (2015)
tra 2456703.82417 0.00029 365 Kreidberg et al. (2015)
tra 2456711.46415 0.00025 372 Maciejewski et al. (2016)
tra 2456719.10428 0.00034 379 Kreidberg et al. (2015)
tra 2456721.28692 0.00034 381 Kreidberg et al. (2015)
tra 2456722.37807 0.00046 382 Maciejewski et al. (2016)
tra 2456986.50195 0.00043 624 Maciejewski et al. (2016)
tra 2457010.51298 0.00039 646 Maciejewski et al. (2016)
tra 2457012.69617 0.00049 648 Collins et al. (2017)
tra 2457045.43831 0.00046 678 Maciejewski et al. (2016)
tra 2457046.53019 0.00049 679 Maciejewski et al. (2016)
tra 2457059.62713 0.00035 691 Collins et al. (2017)
tra 2457060.71839 0.00036 692 Collins et al. (2017)
tra 2457067.26715 0.00022 698 Maciejewski et al. (2016)
tra 2457068.35834 0.00020 699 Maciejewski et al. (2016)
tra 2457103.28423 0.00031 731 Maciejewski et al. (2016)
tra 2457345.57867 0.00042 953 Maciejewski et al. (2016)
tra 2457390.32708 0.00033 994 Maciejewski et al. (2016)
tra 2457391.41818 0.00033 995 Maciejewski et al. (2016)
tra 2457426.34324 0.00055 1027 Maciejewski et al. (2016)
tra 2457427.43496 0.00023 1028 Maciejewski et al. (2016)
tra 2457671.91324 0.00035 1252 this work
tra 2457706.83791 0.00037 1284 this work
tra 2457765.77515 0.00028 1338 this work
tra 2457766.86633 0.00039 1339 this work
tra 2457776.68869 0.00029 1348 this work
tra 2457788.69464 0.00048 1359 this work
tra 2457800.69978 0.00032 1370 this work

Notes.
a Refers to the light curve obtained by Hebb et al. (2009) with the 2 m Liverpool telescope, as analyzed by Maciejewski et al. (2013).
b Re-analyzed in this work.
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centroiding versus center-of-light. Each of those four versions
contains 11 time series with different aperture sizes.

We corrected for the well-known intrapixel sensitivity
variations using pixel-level decorrelation (PLD; Deming et al.
2015). In PLD, the flux time series is modeled as the sum of the
astrophysical variation, a temporal baseline, and a weighted
sum of the (normalized) time series of each pixel comprising
the point-spread function. Because each pixel value is divided
by the total brightness of the star in that image, PLD effectively
separates astrophysical information and Spitzer detector effects.
PLD has also been used to produce high-quality photometry
from K2 data (Luger et al. 2016).

Our implementation of PLD operates on time-binned data
(see Section 3.1 of Deming et al. 2015). Over a trial range of
occultation midpoints and median aperture radii, the code uses
linear regression to find the best-fitting occultation depth and
pixel coefficients. We provisionally adopt the midpoint that
produces the best fit (smallest 2c ). The code then varies the
aperture radius from among the 11 possible values and the
duration of the time bins. The optimal values of the radius and
bin size are determined by examining the Allan (1966)
deviation relation of the residuals and identifying the case that
comes closest to the ideal relation.7 Then, an MCMC procedure
is used to optimize the light-curve parameters (including the
time of mid-occultation), pixel coefficients, and temporal
baseline coefficients. The temporal baseline was taken to be a
quadratic function of time, which was sufficient to describe the
phase-curve variation in the vicinity of the occultation.

After performing these steps for all four different versions of
the photometry, we adopted the version that came closest to
achieving the theoretical photon noise limit. For the 3.6 μm
data, the adopted version used 10-frame binning, center-of-
light centroiding, and a constant aperture radius of 2.3 pixels.
For the 4.5 μm data, the adopted version used 10-frame
binning, center-of-light centroiding, and a constant aperture
radius of 2.2 pixels. With these choices, we achieved a noise
level of 1.29 and 1.24 times the theoretical photon noise limit at

3.6 and 4.5 μm, respectively. The uncertainty in the midpoint
of each occultation was determined from the standard deviation
of the (very nearly Gaussian) marginalized posterior distribu-
tion. The new light curves are shown in Figure 2, and the times
are given in Table 1. The best-fit central times are relatively
insensitive to the version of the photometry adopted in the final
solution. The very worst of the four photometry solutions for
the 3.6 and 4.5 μm data gave midpoints differing by 31 and
75 s (0.3σ and 0.6σ), respectively.

4. Timing Analysis

Table 1 gathers together all of the times of transits (ttra) and
occultations (tocc) used in our analysis. We included all of the
data we could find in the literature for which (i) the analysis
was based on observations of a single event, (ii) the midpoint
was allowed to be a completely free parameter, and (iii) the
time system is documented clearly. The tabulated occultation
times have not been corrected for the light-travel time across
the diameter of the orbit. For the timing analysis described
below, the occultation times were corrected by subtract-
ing a c2 22.9= s.
We fitted three models to the timing data using the MCMC

method. The first model assumes a circular orbit and a constant
orbital period:

t E t PE, 2tra 0= +( ) ( )

t E t
P

PE
2

, 3occ 0= + +( ) ( )

where E is the epoch number. Figure 3 displays the residuals
with respect to this model. The fit is poor, with 197.6min

2c =
and 111 degrees of freedom. The transit residuals follow a
negative parabolic trend, indicating a negative period deriva-
tive. Our new data—the square points at the rightmost extreme
of the plot—follow the trend that had been established by
Maciejewski et al. (2016). Thus, we confirm the finding of
Maciejewski et al. (2016) that the transit interval is slowly
shrinking.

Figure 2. New occultation light curves. Black points are the binned Spitzer measurements from epochs 305 (left) and 308 (right). Red curves are the best-fit models.

7 The Allan deviation relation expresses how the standard deviation of the
binned residuals varies with bin size. For ideal white noise, it should decrease
as the inverse square root of the bin size.
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Next, we fitted a model that assumes a circular orbit and a
constant period derivative:

t E t PE
dP

dE
E

1

2
, 4tra 0

2= + +( ) ( )

t E t
P

PE
dP

dE
E

2

1

2
. 5occ 0

2= + + +( ) ( )

The red curves in Figure 3 shows the best fit, which has
118.5min

2c = and 110 degrees of freedom. Both the transit and
occultation data are compatible with the model. The implied
period derivative is

dP

dt P

dP

dE

1
9.3 1.1 10 29 3 ms yr .

6

10 1= = -  ´ = - - -( )

( )

In the third model, the orbit is slightly eccentric and
undergoing apsidal precession:

t E t P E
eP

cos , 7tra 0 s
a

p
w= + -( ) ( )

t E t
P

P E
eP

2
cos , 8occ 0

a
s

a

p
w= + + +( ) ( )

where e is the eccentricity, ω is the argument of pericenter, Pa is
the anomalistic period and Ps is the sidereal period. The argument
of pericenter advances uniformly in time,

E
d

dE
E, 90w w

w
= +( ) ( )

and the two periods are related by

P P
d dE

1
2

. 10s a
w
p

= -⎜ ⎟⎛
⎝

⎞
⎠ ( )

These expressions are based on Equation (15) of Giménez &
Bastero (1995), in the limit of low eccentricity and high

inclination. This model has five parameters: t0, Ps, e, 0w ,
and d dEw .
The blue curves in Figure 3 show the best-fit precession

model. The main difference between the decay and precession
models is that apsidal precession produces anticorrelated transit
and occultation timing deviations, while the orbital decay
model produces deviations of the same sign. The precession fit
has 124.0min

2c = and 108 degrees of freedom. The model
achieves a reasonable fit by adjusting the precession period to
be longer than the observing interval. In this way, the parabolic
trend can be matched by the downward-curving portion of a
sinusoidal function. However, there is tension between the need
for enough downward curvature in the transit deviations to fit
the earliest data and a small enough upward curvature in the
occultation deviations to fit the most recent data.
The orbital decay model provides the best fit. It is better than

the precession model by 5.52cD = , despite the handicap of
having two fewer free parameters. The Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC) are
widely used statistics to choose the most parsimonious model
that fits the data:

kAIC 2 , 112a c= = + ( )

k nBIC log , 122b c= = + ( )

where n is the number of data points and k is the number of free
parameters. In this case, n=113, k=3 for decay, and k=5
for precession. The AIC favors the decay model by Δα=9.46,
corresponding to a likelihood ratio of exp 2 113aD =( ) . The
BIC favors the orbital decay model by Δβ=14.91, corresp-
onding to an approximate Bayes factor of exp 2 1730bD =( ) .
Table 2 gives the best-fit parameters for all three models. In

summary, a constant period has been firmly ruled out, and
orbital decay is statistically favored over apsidal precession as
the best explanation for the timing data. However, the statistical
significance of the preference for orbital decay is modest and
depends on the reliability of the quoted uncertainties for all of

Figure 3. Timing residuals for WASP-12. Each data point is the difference between an observed eclipse time and the prediction of the best-fit constant-period model.
The top panel shows transit data and the bottom panel shows occultation data. Circles are previously reported data, and squares are new data. The blue curves show the
best-fit precession model, for which transit and occultation deviations are anticorrelated. The red curves show the best-fit orbital decay model, in which the transit and
occultation deviations are the same.

6

The Astronomical Journal, 154:4 (10pp), 2017 July Patra et al.



the timing data, which come from different investigators using
different methods. For example, when the earliest data point is
omitted, orbital decay is still preferred but 2cD is reduced to
2.0. For these reasons, and out of general caution, we do not
regard apsidal precession as being definitively ruled out.
Further observations are needed.

5. Implications

5.1. Orbital Decay

To explore the implications of the best-fit models, we
assume, for the moment, that the orbital decay interpretation is
correct. Based on the current decay rate, the period would
shrink to zero in

P

dP dt
3.2 Myr. 13= ( )

The future lifetime of the planet is likely to be even shorter,
because the decay rate is expected to increase rapidly with
decreasing period.

In the simplified “constant phase lag” model for tidal
evolution, the period derivative is

dP

dt Q

M

M

R

a

27

2
, 14

p
5

 

p
= - ⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠ ( )

which we obtained by applying Kepler’s third law to Equation (20)
of Goldreich & Soter (1966). Here, Q is the “modified quality
factor” of the star’s tidal oscillations (often designated elsewhere as
Q¢). For the case of WASP-12, M M 9.9 10p

4
 = ´ - and

a R 3.097 = (Chan et al. 2011), giving

Q 2 10 . 155
 » ´ ( )

This value for Q is smaller than the typical range of 106–7

that has been inferred through ensemble analyses of binary
stars and star-planet systems (see, e.g., Meibom &
Mathieu 2005; Hansen 2010; Penev et al. 2012). One
exception is Jackson et al. (2008), who found Q 105.5

 ~
based on the period-eccentricity distribution of hot Jupiters.
This is consistent with our result.

Theoretically, the quality factor should depend on the orbital
period, perturbation strength, and internal structure of the star
(Ogilvie 2014). Recently, Essick & Weinberg (2016) calculated
Q for hot Jupiters perturbing solar-type stars, based on the
nonlinear interactions and dissipation of tidally driven g-modes.
For the mass ratio and period of WASP-12, their Equation (26)
predicts Q 4 105

 = ´ , close to the observed value. However,
their calculation pertained to stars with a radiative core and a
convective envelope, and it is not clear that WASP-12 belongs in
this category. With T 6100eff = K (Torres et al. 2012), WASP-
12 is right on the borderline between stars with convective and
radiative envelopes. In fact, we wonder if this coincidence—
lying right on the Kraft break—could be related to the apparently
rapid dissipation rate. The star may have a convective core and a
convective envelope, separated by a radiative zone, perhaps
leading to novel mechanisms for wave dissipation.

5.2. Apsidal Precession

Assuming instead that the apsidal precession model is
correct, the orbital eccentricity is 0.0021±0.0005. This is
compatible with the upper limit of 0.05 from observations of
the spectroscopic orbit (Husnoo et al. 2012). The observed
precession rate is 26 3w = ˙ degyr−1, corresponding to a
precession period of 14±2years.
Ragozzine & Wolf (2009) showed that for systems

resembling WASP-12, the largest contribution to the theoretical
apsidal precession rate is from the planet’s tidal deformation.
The rate is proportional to the planet’s Love number kp, a
dimensionless measure of the degree of central concentration of
the planet’s density distribution. Lower values of kp correspond
to more centrally concentrated distributions, which are closer to
the point-mass approximation and, therefore, produce slower
precession. Equation (14) of Ragozzine & Wolf (2009) can be
rewritten for this case as

d

dE
k

M

M

R

a
15 . 16p

p

p
5

w
p=

⎛
⎝⎜

⎞
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⎛
⎝⎜

⎞
⎠⎟ ( )

Using the measured precession rate and relevant parameters of
WASP-12, this equation gives k 0.44 0.10p =  . If this
interpretation is confirmed, it would be a unique constraint
on an exoplanet’s interior structure, in addition to the usual
measurements of mass, radius, and mean density. For Jupiter, a
value of k 0.59p = has been inferred from its observed gravity
moments (Wahl et al. 2016). Therefore, the precession
interpretation for WASP-12b suggests that its density distribu-
tion has a similar degree of central concentration as Jupiter, and
perhaps somewhat higher.

5.3. Prior Probabilities

It is worth contemplating the “prior probability” of each
model. By this, we mean the chance that the circumstances
required by each model would actually occur, independently of
the goodness-of-fit to the data. At face value, both models
imply that we are observing WASP-12 at a special time, in
violation of the “temporal Copernican principle” articulated by
Gott (1993). It is difficult, however, to decide which model
requires the greater coincidence.
Given the star’s main-sequence age of 1700±800Myr

(Chan et al. 2011), the orbital decay model would have us

Table 2
Best-fit Model Parameters

Parameter Value(Unc.)a

Constant period
Reference epoch, t0[BJDTBD] 2456305.455609(28)
Period, P[days] 1.091420025(47)
Orbital decay
Reference epoch, t0[BJDTBD] 2456305.455790(35)
Period at reference epoch, P[days] 1.091420078(47)
dP/dE [days] 1.02 11 10 9- ´ -( )
Apsidal precession
Reference epoch, t0[BJDTBD] 2456305.45509(15)
Sidereal period, Psid [days] 1.09141993(15)
Eccentricity, e 0.00208(47)
A.O.P. at reference epoch, 0w [rad] 2.92(19)
Precession rate, d dEw [rad epoch−1] 0.00133(18)

Note.
a The numbers in parenthesis give the 1σ uncertainty in the final two digits.
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believe we are witnessing the last ∼0.2% of the planet’s life. If
we observed a single system at a random time, this would
require a one-in-500 coincidence. However, WASP-12 is not
the only hot Jupiter that we and others have been monitoring.
There are about 10 other good candidates with comparably low
a R, increasing the odds of the coincidence by an order of
magnitude.

It is noteworthy that other investigators have argued on
independent grounds that WASP-12b is close to death. Fossati
et al. (2010), Haswell et al. (2012), and Nichols et al. (2015)
have presented near-ultraviolet transit spectroscopy consistent
with an extended and escaping exosphere. The resulting mass
loss process has been studied theoretically by Li et al. (2010),
Lai et al. (2010), and Bisikalo et al. (2013). Most recently,
Jackson et al. (2017) developed a new theory for Roche lobe
overflow and identified WASP-12 as a likely case of rapid
mass loss.

It is also possible that orbital decay occurs in fits and starts,
because of strong and erratic variations in the dissipation rate
with the forcing period (see, e.g., Ogilvie & Lin 2007; Barker
& Ogilvie 2010). Thus, the planet may be experiencing a brief
interval of rapid decay. This does not eliminate the requirement
for a coincidence, because one would expect to discover the
system in one of the more prolonged states of slow dissipation.
However, it does mean that the planet’s future lifetime may be
longer than the current value of P Ṗ.

As for apsidal precession, the trouble is the very short
expected timescale for tidal orbital circularization. This process
is thought to be dominated by dissipation within the planet,
rather than the star. Equation (25) of Goldreich & Soter (1966),
relevant to this case, can be rewritten

e

de dt

Q M

M

a

R
P
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63
. 17e

p p
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orb


t
p

= =
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For WASP-12, this gives 0.5 Myret ~ , assuming Q 10p
6~ .

At this rate, even 4Myr of tidal evolution would reduce the
eccentricity below 10−3. Of course, the planetary quality factor
Qp could be larger than the standard value of 106, or the tidal
model leading to the preceding equation could be a gross
misrepresentation of the actual circularization process.

There may also be some process that continually excites the
eccentricity. One possibility is gravitational forcing by another
planet, although no other nearby planets are known in the
WASP-12 system (Knutson et al. 2014). An intriguing
possibility is eccentricity excitation by the gravitational
perturbations from the star’s convective eddies. In this
scenario, proposed by Phinney (1992) to explain the small
but nonzero eccentricities of pulsars orbiting white dwarfs, the
system reaches a state of equipartition between the energy of
eccentricity oscillations (epicyclic motion) and the kinetic
energy of turbulent convection. To our knowledge, this theory
has only been developed for post-main-sequence stars (see,
e.g., Verbunt & Phinney 1995; Rafikov 2016). It is not obvious
that this theory would apply to WASP-12 and be compatible
withe∼10−3.

Should further theoretical investigations reveal that this
mechanism (or any other) could naturally maintain the orbital
eccentricity at the level of 10−3, then the apsidal precession
model would require no special coincidence. Neither would it
require unique circumstances; it is possible that eccentricities of

this order could exist in other hot Jupiter systems and have
remained undetected. Thus, the identification of a natural
eccentricity-excitation mechanism would swing the prior-
probability balance in the direction of apsidal precession.

5.4. Other Possible Explanations

To this point, we have presented orbital decay and apsidal
precession as the only possible reasons for an apparent period
decrease. Another possibility is that the star is accelerating
toward Earth, due to the force from stellar companions or wide-
orbiting planets. This would produce a negative apparent
period derivative of v P cṙ , where vr is the radial velocity.
Based on long-term Doppler monitoring, Knutson et al. (2014)
placed an upper limit for WASP-12 of v 0.019r <∣ ˙ ∣
ms−1day−1 (2σ), which, in turn, limits the apparent Ṗ to be
smaller than 7 10 11´ - . This is an order of magnitude too small
to be responsible for the observed period derivative. Of course,
none of these phenomena are mutually exclusive. The system
may be experiencing a combination of orbital decay, apsidal
precession, and radial acceleration, although joint modeling of
these effects is not productive with the current data.
Rafikov (2009) described two other phenomena that cause

changes in the apparent period of a transiting planet. The first is
the Shklovskii effect, wherein the star’s proper motion leads to
a changing radial velocity and a nonzero second derivative of
the light-travel time. This is already ruled out by Doppler
observations of the radial acceleration. For completeness,
though, we note that the observed distance d and proper motion
μ imply a period derivative of P d c 6 102 15m ~ ´ - , too
small to explain the data. The second phenomenon, also
dependent on proper motion, is the apparent apsidal precession
caused by our changing viewing angle. The resulting period
derivative is of order P 22m p~( ) , which in this case is ∼10−21,
too small by many orders of magnitude.

6. Future Prospects

With WASP-12, we are fortunate that both possibilities—
orbital decay and apsidal precession—lead to interesting
outcomes. It will soon be possible to measure the tidal
dissipation rate of a star, or the tidal deformability of an
exoplanet, either of which would be a unique achievement. To
help understand the requirements for a definitive verdict,
Figure 4 shows the future projections of a sample of 100
models that provide satisfactory fits to the data, drawn
randomly from our converged Markov chains.
For the transits, the two families of models become separated

by a few minutes by 2021–22. The occultation models diverge
earlier, and are separated by a few minutes in 2019–20. Thus,
while continued transit timing is important, the most rapid
resolution would probably come from observing occultations a
few years from now. In principle, transit duration variations
(TDV) would also help to distinguish between the two models,
but the expected amplitude is (Pál & Kocsis 2008)

P R

a
eTDV

2
cos 10 sec, 18

p
w~ ~⎜ ⎟⎛

⎝
⎞
⎠ ( )

which will be difficult to detect.
In this paper, we have focused on the timing anomalies of

WASP-12. This system has other remarkable features we have
not even discussed. The star’s equator is likely to be misaligned
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with the orbital plane (Schlaufman 2010; Albrecht et al. 2012).
The star is also part of a hierarchical three-body system, with a
tight pair of M dwarfs orbiting the planet-hosting star at a
distance of about 265AU (Bechter et al. 2014). Detailed
modeling of the star’s interior structure and tidal evolution is
warranted, as are continued observations of transits and
occultations.

We are very grateful to Allyson Bieryla, David Latham, and
Emilio Falco for their assistance with the FLWO observations.
We thank Nevin Weinberg, Jeremy Goodman, Kaloyen Penev,
David Oort Alonso, Heather Knutson, Dong Lai, and the CfA
Exoplanet Pizza group for helpful discussions. We also
appreciate the anonymous reviewer’s prompt and careful report.
Work by K.C.P. was supported by the MIT Undergraduate
Research Opportunities Program and the Paul E. Gray Fund.

Note added in proof. D. Lai has reminded us of another possible
reason for a cyclic variation in period: the Applegate (1992) effect, in
which a star's quadrupole moment varies over a magnetic activity
cycle. For WASP-12, Watson & Marsh (2010) estimated that this
effect could produce timing deviations of 4–40 s depending on the
cycle duration. The transit and occultation deviations would have the
same sign, allowing this effect to be distinguished from apsidal
precession.
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