244 research outputs found

    Brain regions essential for improved lexical access in an aged aphasic patient: a case report

    Get PDF
    BACKGROUND: The relationship between functional recovery after brain injury and concomitant neuroplastic changes is emphasized in recent research. In the present study we aimed to delineate brain regions essential for language performance in aphasia using functional magnetic resonance imaging and acquisition in a temporal sparse sampling procedure, which allows monitoring of overt verbal responses during scanning. CASE PRESENTATION: An 80-year old patient with chronic aphasia (2 years post-onset) was investigated before and after intensive language training using an overt picture naming task. Differential brain activation in the right inferior frontal gyrus for correct word retrieval and errors was found. Improved language performance following therapy was mirrored by increased fronto-thalamic activation while stability in more general measures of attention/concentration and working memory was assured. Three healthy age-matched control subjects did not show behavioral changes or increased activation when tested repeatedly within the same 2-week time interval. CONCLUSION: The results bear significance in that the changes in brain activation reported can unequivocally be attributed to the short-term training program and a language domain-specific plasticity process. Moreover, it further challenges the claim of a limited recovery potential in chronic aphasia, even at very old age. Delineation of brain regions essential for performance on a single case basis might have major implications for treatment using transcranial magnetic stimulation

    Age-related changes in the neural networks supporting semantic cognition:A meta-analysis of 47 functional neuroimaging studies

    Get PDF
    Semantic cognition is central to understanding of language and the world and, unlike many cognitive domains, is thought to show little age-related decline. We investigated age-related differences in the neural basis of this critical cognitive domain by performing an activation likelihood estimation (ALE) meta-analysis of functional neuroimaging studies comparing young and older people. On average, young people outperformed their older counterparts during semantic tasks. Overall, both age groups activated similar left-lateralised regions. However, older adults displayed less activation than young people in some elements of the typical left-hemisphere semantic network, including inferior prefrontal, posterior temporal and inferior parietal cortex. They also showed greater activation in right frontal and parietal regions, particularly those held to be involved in domain-general controlled processing, and principally when they performed more poorly than the young. Thus, semantic processing in later life is associated with a shift from semantic-specific to domain-general neural resources, consistent with the theory of neural dedifferentiation, and a performance-related reduction in prefrontal lateralisation, which may reflect a response to increased task demands

    An investigation of retronasal testing of olfactory function in a Turkish population

    No full text

    Dual AO/EB Staining to Detect Apoptosis in Osteosarcoma Cells Compared with Flow Cytometry

    No full text

    Gastrointestinal autonomic nerve tumor of the stomach

    No full text
    • …
    corecore