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Less is more: neural mechanisms underlying
anomia treatment in chronic aphasic patients

Davide Nardo,1 Rachel Holland,2 Alexander P. Leff,1,3,4 Cathy J. Price4 and
Jennifer T. Crinion1

Previous research with aphasic patients has shown that picture naming can be facilitated by concurrent phonemic cueing [e.g.

initial phoneme(s) of the word that the patient is trying to retrieve], both as an immediate word retrieval technique, and when

practiced repeatedly over time as a long-term anomia treatment. Here, to investigate the neural mechanisms supporting word

retrieval, we adopted—for the first time—a functional magnetic resonance imaging task using the same naming procedure as it

occurs during the anomia treatment process. Before and directly after a 6-week anomia treatment programme, 18 chronic aphasic

stroke patients completed our functional magnetic resonance imaging protocol—a picture naming task aided by three different

types of phonemic cues (whole words, initial phonemes, final phonemes) and a noise-control condition. Patients completed a

naming task based on the training materials, and a more general comprehensive battery of language tests both before and after the

anomia treatment, to determine the effectiveness and specificity of the therapy. Our results demonstrate that the anomia treatment

was effective and specific to speech production, significantly improving both patients’ naming accuracy and reaction time imme-

diately post-treatment (unstandardized effect size: 29% and 17%, respectively; Cohen’s d: 3.45 and 1.83). Longer term gains in

naming were maintained 3 months later. Functional imaging results showed that both immediate and long-term facilitation of

naming involved a largely overlapping bilateral frontal network including the right anterior insula, inferior frontal and dorsal

anterior cingulate cortices, and the left premotor cortex. These areas were associated with a neural priming effect (i.e. reduced

blood oxygen level-dependent signal) during both immediate (phonemically-cued versus control-cue conditions), and long-term

facilitation of naming (i.e. treated versus untreated items). Of note is that different brain regions were sensitive to different

phonemic cue types. Processing of whole word cues was associated with increased activity in the right angular gyrus; whereas

partial word cues (initial and final phonemes) recruited the left supplementary motor area, and right anterior insula, inferior frontal

cortex, and basal ganglia. The recruitment of multiple and bilateral areas may help explain why phonemic cueing is such a

successful behavioural facilitation tool for anomia treatment. Our results have important implications for optimizing current

anomia treatment approaches, developing new treatments, and improving speech outcome for aphasic patients.
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Introduction
Anomia—the inability to retrieve words an individual

wants to say—is the most common symptom of aphasia

post-stroke, often regardless of severity and lesion location

(Goodglass, 1993; Crinion and Leff, 2007). The deficit typ-

ically persists in chronic aphasia, and constitutes a serious

obstacle to patients’ speech, communication and effective

functioning in everyday life (Code, 2003; Johansson

et al., 2012). As such, anomia and its treatment is seen

as a hallmark for aphasia recovery.

Functional imaging studies to date have mainly focused

on naming performance as their primary outcome measure

for aphasia treatment success (for a review, see Crinion and

Leff, 2015). All report significant changes in brain activity

following treatment with some degree of consistency. For

some, left perilesional activation is deemed critical for

aphasia recovery (Fridriksson, 2010; Rochon et al., 2010;

Fridriksson et al., 2012; Abel et al., 2014), while others

report significant bilateral changes (Fridriksson et al.,

2007; Vitali et al., 2007; van Hees et al., 2014; Abel

et al., 2015). In the case of speech production, the contri-

bution of language homologue areas in the right hemi-

sphere and the direction of these effects (i.e. increase

versus decrease of task-dependent activation) remains

hotly debated, particularly with respect to whether right

frontal cortices—including Broca’s area homologue—play

a beneficial (Blasi et al., 2002; Crinion and Price, 2005)

or detrimental (Naeser et al., 2005; Winhuisen et al.,

2005) role in recovery. Accompanying these functional

brain changes within the language network itself (e.g. left

inferior frontal and superior temporal cortices, as in

Fridriksson et al., 2012), are reported changes in additional

non-language cognitive networks (Fridriksson et al., 2007;

van Hees et al., 2014), leading some authors to propose

that successful aphasia (particularly speech) treatment re-

quires recruitment of both language and domain-general

networks to facilitate recovery (Vitali et al., 2007;

Fridriksson, 2010; Rochon et al., 2010; Abel et al., 2014,

2015; Brownsett et al., 2014).

A key factor that could help explain the variability of

reported aphasia recovery results and treatment effects is

the nature of the therapy administered to drive the brain

and behavioural change. Many studies have used confron-

tation picture naming as their functional MRI task and

outcome measure of aphasia treatment. This methodo-

logical choice allows the neural correlates underlying the

post-therapeutic outcome to be investigated. However, the

treatment approaches used have varied widely across stu-

dies (e.g. semantic versus phonological, errorful versus

errorless, etc.), with a wide range in dose (total hours

range from 12 to 56); intensity (hours per week from 5

to 15); and number of items treated (from 30 to 80).

When the functional MRI task (e.g. free-naming) is

different from the task used in aphasia treatment (e.g.

cued-naming, or spoken word-to-picture matching), the in-

terpretation of the imaging results is complicated (i.e. it is

not clear how therapy facilitates brain and behavioural

change in these patients). To improve aphasic patients’

speech recovery and outcome we need to investigate, under-

stand and optimize the therapeutic mechanisms themselves

that are driving the brain and behavioural change. This

constitutes the focus of our present study.

A striking feature of anomia is that phonemic cues im-

mediately aid word retrieval in many patients. Patients who

are unable to name a given item (e.g. ‘car’) find they can

say the word perfectly when given an auditory cue (e.g. the

initial phoneme /ka/ or whole word /ka:r/). The cues convey

speech sound information about the word in question

(Pease and Goodglass, 1978; Kendall et al., 2008).

Pairing these cues with pictures of items a patient repeat-

edly practices naming can result in long-term (un-cued)

naming improvement (for reviews see Howard, 1994;

Maher and Raymer, 2004), and clinically meaningful

speech gains (Raymer et al., 2007; Lambon Ralph et al.,

2010; Best et al., 2013). It has been suggested that this

phonemic cueing treatment approach relies upon the same

processes that underlie priming in unimpaired speakers

(Best et al., 2002; Nickels 2002), where phonemic cues

prime the retrieval of a word’s correct phonological form

(Miceli et al., 1996; Starreveld, 2000). In aphasic patients,

the hypothesis is that naming improvements using this

treatment approach rely on recruitment and priming of re-

sidual ‘normal’ naming neural networks (Madden et al.,

2017). However, despite the longstanding use of phonemic

cues to aid naming in clinical practice, surprisingly the

neural mechanisms underlying this treatment approach

have not been investigated to date.

To do this, we designed two complementary experiments.

The first experiment (Experiment 1: Free-naming; behav-

ioural only) asked patients to perform a confrontation pic-

ture naming task, without the aid of any auditory cues at

three time points: before (T1), directly after (T2), and

3 months after (T3) completion of an intensive, high-dose

anomia treatment programme using the phonemic cued-

naming approach and a large pool of items (see below).

The second experiment (Experiment 2: Cued-naming;

conjoint behavioural-functional MRI) focused on the

neural mechanisms implicated in word retrieval as it

occurred during the therapeutic process at two time

points: before (T1) and directly after (T2) the 6-week

anomia treatment. Here, patients performed a picture
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naming task while in the functional MRI scanner, on a

selected subset of items (both treated and untreated), pre-

sented concurrently with different auditory cue-types: three

phonemic cues (whole words, initial phonemes, final phon-

emes) and one control condition (noise). This enabled us to

investigate the neural mechanisms underlying: (i) immediate

versus long-term cued facilitation of naming, in order to

shed light on their relative nature; but also (ii) naming fa-

cilitation by different types of phonemic cues, to clarify

whether they rely on shared or different neural processes.

To our knowledge, the present study is the first to adopt a

functional MRI task that directly mirrors the training task

used in an anomia treatment programme. The comparison

between cued and control items allowed us to investigate

the immediate facilitation of naming, as per what was also

happening in each cued-naming treatment session the pa-

tients completed. The comparison between treated and un-

treated items after treatment allowed us to characterize the

consolidation of training utilizing these cues and long-term

facilitation effects on naming performance.

We predicted that long-term word relearning and recov-

ery would be correlated with increased efficiency and

reduced blood oxygen level-dependent (BOLD) signal

within the same bilateral residual speech network primed

by phonemic cueing and facilitating immediate spoken

word retrieval in our patients. Secondly, we predicted

that different cue-types would have differential effects on

naming performance (considering that they convey different

amounts of information about the to-be-retrieved word),

and would rely on differential activation within the bilat-

eral residual speech network supporting spoken word re-

trieval in our brain damaged patients.

Materials and methods

Patients

Eighteen right-handed native English speakers with acquired
aphasia following a single left-hemisphere stroke participated
in the study (see Fig. 1 for a lesion overlap map, Table 1 for

demographic and clinical data, and Supplementary Table 1 for

a description of lesion locations). All had normal hearing and

no previous history of neurological or psychiatric disease, as
well as no contraindications to MRI scanning. Inclusion cri-

teria were: (i) anomia as determined by the Boston Naming

Test (Kaplan et al., 1983; cut-off 556); (ii) good single word
comprehension as assessed by the spoken words comprehen-

sion subtest of the Comprehensive Aphasia Test (Swinburn

et al., 2005); (iii) relatively spared ability to repeat single
monosyllabic words and non-words from the Psycholinguistic

Assessments of Language Processing in Aphasia (Kay et al.,
1992); (iv) absence of speech apraxia as determined by the
Apraxia Battery for Adults (Dabul, 2000); and (v) spared or

partially spared left inferior frontal cortex. All gave written
informed consent to take part in the study, which was

approved by the Central London Research Ethics Committee,

and conducted in accordance with the ethical principles stated
by the Declaration of Helsinki.

Stimuli

In Experiment 1, stimuli consisted of 299 black and white line

drawings of objects adapted from the International Picture-

Naming Project (Szekely et al., 2004; http://crl.ucsd.edu/experi-
ments/ipnp/index.html). All object names were monosyllabic,

consonant-vowel-consonant in terms of phonological structure,

and had high name agreement (i.e. at least 75% of test subjects
produced the same target name). Monosyllabic words were

used to minimize any effect of articulatory challenge.
In Experiment 2, a subset of 107 stimuli out of the 299 from

Experiment 1 was used. In order to increase patients’ naming
accuracy (and hence optimize the functional MRI design effi-

ciency), this subset of stimuli was chosen by selecting items

with the highest frequency ratings. Each picture was presented
simultaneously with an auditory cue. Auditory cues were

either: (i) a whole word cue (e.g. for the picture of a car,

/ka:r/); (ii) an initial phoneme segment (e.g. /ka/); (iii) a final
phoneme segment (/a:r/); or (iv) an unintelligible spectrally

rotated noise-vocoded auditory control cue (noise), a condition

successfully used in previous functional MRI studies (Scott
et al., 2000; Narain et al., 2003; Obleser et al., 2007) See

Supplementary material for full details on how the auditory

cues were generated.

Figure 1 Lesions overlap in our sample of patients. Colour range indicates the amount of overlap expressed as number of patients

(colour bar). Numbers on the top represent z MNI coordinates of brain sections, displayed in neurological convention (i.e. L is L, R is R).
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Anomia treatment

Patients were presented with 150 monosyllabic high frequency
to-be-treated items taken from the pool of 299 used in the free-
naming experiment (Experiment 1, previous section; 149 items
were therefore untreated). Fifty-four items out of 150 were
predetermined to be treated in all patients and also used as
picture naming stimuli in the functional MRI scanner; whereas
53 of the untreated 149 items were used as naming stimuli in
the scanner (Experiment 2). The remaining 96 to-be-treated
items (150–54) and 96 untreated items (149–53) for each
patient were determined on the basis of their individual
pretreatment naming performance (in terms of accuracy) in
Experiment 1. This ensured that each patient’s naming per-
formance for the to-be-treated (96 + 54 = 150) and untreated
(96 + 53 = 149) word lists were matched at baseline (i.e. that
no bias occurred by chance between the two pools of items).
These subject-specific items were not used in the functional
MRI experiment (Experiment 2). Patients were given a
laptop and asked to complete a minimum of 2 h of naming
practice daily over a 6-week period. The pictures and auditory
cues were presented using the ‘StepByStep’ aphasia treatment
software (http://www.aphasia-software.com). The naming
practice was designed to be completed in an error-reducing
manner (Fillingham et al., 2003, 2006). For example, in
naming a picture of a car the patient was asked to name it
three times: (i) after a whole word auditory cue /ka:r/; (ii) after
an initial phonemic cue /ka/; (iii) after a whole word cue again.
Only then would the patient proceed to the next item to be
named. Patients completed on average a total of 73 h of
naming practice (Table 1). This is within one standard devi-
ation (SD) of the mean total dose of treatment showing a

positive impact on aphasic patients’ communicative ability,
as found by Bhogal et al. (2003) in their meta-analysis of
aphasia treatment studies.

Procedure

Experiments 1 and 2 were run in separate sessions, no more
than 2 days apart at each of the testing time points (see Fig. 2
for details of study design and functional MRI experimental
protocol, cf. Supplementary material). In both experiments,
patients performed a picture naming task and were instructed
to name each picture as quickly and as accurately as possible.
Recordings of spoken responses were reviewed offline to score
naming accuracy and determine trial-specific reaction time
(RT) for each patient. We scored naming accuracy consistent
with the standardized Comprehensive Aphasia Test guidelines
(Swinburn et al., 2005): verbal, phonemic, neologistic, and
dyspraxic errors were not accepted; dysarthric distortions
were permitted provided it was clear that each phoneme
within the word had been correctly selected.

In Experiment 1, patients were asked to name 299 pictures
without the aid of any auditory cue before (T1) and after (T2)
the 6-week anomia treatment programme, plus at follow-up 3
months later (T3). In Experiment 2, patients performed an
auditory-cued picture naming task in the scanner, at two
time points (T1 and T2). Four functional runs were acquired
within each scanning session at both time points. Each of the
107 picture stimuli was presented once within each functional
run accompanied simultaneously (stimulus-onset-asyn-
chrony = 0 ms) (Supplementary material) with one of four dif-
ferent cue-types (whole word, initial phoneme, final phoneme
or noise-control). The order of pictures and accompanying

Table 1 Demographic and clinical data of the patients

Patient ID Sex Age Lesion

volume (cm3)

Months

post-stroke

BNT CAT PALPA 9 PALPA 8 Hours of

training

P1 M 64 171 78 47 15 20 6 40

P2 F 49 44 17 12 15 21 6 31

P3 M 54 294 78 14 11 10 0 77

P4 M 41 234 65 28 14 24 8 116

P5 M 49 144 57 34 15 17 2 50

P6 M 66 109 61 52 15 24 6 63

P7 F 44 82 72 34 14 24 10 59

P8 M 54 95 34 35 15 24 8 70

P9 M 67 341 47 42 14 24 9 85

P10 M 41 75 8 23 13 23 8 89

P11 M 63 139 264 51 15 24 9 81

P12 M 47 314 52 16 15 22 6 77

P13 M 56 150 40 1 14 18 2 61

P14 F 60 104 121 27 13 22 7 120

P15 M 41 114 18 42 14 21 3 43

P16 F 21 155 33 18 15 20 3 108

P17 F 47 161 53 9 9a 12 0 76

P18 F 43 165 5 21 15 23 1 67

Mean (SD) 50 (12) 161 (84) 61 (58) 28 (15) 14 (2) 21 (4) 5 (3) 73 (25)

Max score possible 60 15 24 10

BNT = Boston Naming Test; CAT = Comprehensive Aphasia Test (spoken words comprehension sub-test); PALPA = Psycholinguistic Assessments of Language Processing in Aphasia

(PALPA 9 = monosyllabic words repetition, PALPA 8 = monosyllabic non-words repetition).
aAlthough not normal, P17’s speech comprehension abilities were above chance, and all errors were semantic in nature (e.g. apple for pear).
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cues was pseudo-randomized (i.e. avoiding more than three
trials with the same cue-type), and the order of presentation
was counterbalanced both within and across patients.

Behavioural analyses

To test the statistical significance of anomia treatment
in Experiment 1 we conducted two repeated measures 2 � 2
ANOVAs (one on naming accuracy and one on RT) (Table 2
and Fig. 3A and B), with Time (T1, T2) and Treatment
(treated items, untreated items) as within-subject variables.
At T1, all items were untreated, but we kept them conceptually
separated to check for any potential bias between the stimuli
pools (Supplementary material). Hence, treated items at T1 are
actually the about ‘to-be-treated’ items. We predicted a signifi-
cant Time � Treatment interaction. The size of anomia treat-
ment effects directly after treatment (T2 versus T1) and
maintenance 3 months later (T3 versus T1) were quantified
using both unstandardized and standardized (i.e. Cohen’s d)
effect sizes (see Supplementary material for calculation).

In Experiment 2, two repeated measures 2 � 2 � 4
ANOVAs were conducted (one on accuracy and one on cor-
rect RT) (Table 2 and Fig. 3C and D), with Time (T1, T2),
Treatment (treated, untreated) and Cueing (whole word, initial
phoneme, final phoneme, noise-control) as within-subject

variables. Again, treated items at T1 are actually the about
‘to-be-treated’ items. Here, we focussed on both the effective-
ness of the anomia treatment and the effect of cue-types, pre-
dicting significant interactions between Time and Treatment,
and between Treatment and Cueing. Significance threshold for
reported results was set to P50.05 throughout.

Imaging acquisition and analysis

Whole-brain imaging was performed on a 3 T Siemens TIM-
Trio system (Siemens) at the Wellcome Trust Centre for
Neuroimaging. T2*-weighted echo-planar images with BOLD
contrast were acquired using a 12-channel head coil. Each
image comprised 48 AC/PC-aligned axial slices with sequential
ascending acquisition, slice thickness = 2 mm, inter-slice
gap = 1 mm, in-plane resolution = 3 � 3 mm. Volumes were
acquired with a repetition time = 3360 ms, and the first six
volumes of each session were discarded to allow for T1 equi-
librium effects. At each time point (T1 and T2), a total of 180
volume images (174 volumes of interest and six dummy scans)
were acquired in four consecutive runs, each lasting �10 min.
Prior to the first functional run of each scanning session, a
gradient field map was acquired for each patient for later B0
field distortion correction of functional images. The same scan-
ner and hardware were used for the acquisition of all images.

Functional data were preprocessed (see Supplementary ma-
terial for details) and analysed using Statistical Parametric
Mapping software (SPM12; www.fil.ion.ucl.ac.uk/spm) run-
ning under Matlab 2015a (MathWorks, Natick, MA).
Statistical analyses were first performed in a subject-specific
fashion. Nine conditions per each time point (i.e. four cue-
types � two treatment levels, plus incorrect responses) were
modelled separately as events convolved with the SPM canon-
ical haemodynamic response function. We used the presenta-
tion of the concurrent picture and auditory cue as the onset
of the event to model the preparatory naming response.
Movement realignment parameters were included as covariates
of no interest. The resulting stimulus-specific parameter esti-
mates were calculated for all brain voxels using the General
Linear Model. At the second level, 16 conditions of interest
were modelled (four cue-types � two treatment levels � two
time points, discarding incorrect responses, and merging ses-
sions across T1 and T2), modelling subjects as a random
factor. Significance threshold was set to P5 0.05 (FWE-cor-
rected for multiple comparisons across the whole brain or
within a region of interest, see below). Anatomical labelling
was determined by using the Automated Anatomical Labeling
atlas (Tzourio-Mazoyer et al., 2002).

Results

Experiment 1: free-naming

Accuracy

Results showed a significant Time � Treatment interaction

(Table 2, Fig. 3A and Supplementary Table 2). As pre-

dicted, naming of treated items was more accurate at T2

(72%) than T1 (43%), and this unstandardized effect size

(29%) was significantly greater (P5 0.001) than the

Figure 2 Study design (A) and functional MRI experi-

mental protocol (B). fMRI = functional MRI; SOA = stimulus-

onset asynchrony.
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difference (5%) between untreated items at T2 (47%) and

T1 (42%; P = 0.006). There were also significant main ef-

fects of Time and Treatment (both driven by improvements

for treated items at T2). Treatment effects remained signifi-

cant at T3 (Fig. 3A), indicating that naming gains were

maintained 3 months later. Cohen’s d-values indicated

large anomia treatment effect sizes: 3.45 for the immediate

post-treatment effects (comparison T2 versus T1), and 1.83

for longer-term naming changes (T3 versus T1).

Reaction time

Results here mirrored the accuracy results, with a signifi-

cant Time � Treatment interaction (Table 2 and Fig. 3B).

Naming of treated items was faster at T2 (1257 ms) than

T1 (1510 ms), and this unstandardized effect size (17%)

was significantly greater (P5 0.001) than the difference

(4%) between untreated items at T2 (1430 ms) than T1

(1496 ms; P = 0.206). Again, there was a significant main

effect of both Time (faster at T2 than T1) and Treatment

(driven by the treatment effect at T2). Here Cohen’s d-

values were smaller than the effects on naming accuracy

(�0.88, i.e. reduced RT post-treatment for the comparison

T2 versus T1; and �0.45 for T3 versus T1).

In summary, our anomia treatment approach using phon-

emic cues resulted in significant, effective and long-lasting

(i.e. maintained 3 months later) improvements in patients’

naming accuracy and efficiency (RT) that was greater for

treated items. There was no evidence to support a naming

accuracy versus speed trade-off in treatment gains.

Importantly, none of the indices of treatment outcome

(i.e. differences between treated items at different time

points) correlated with variables such as age, months

post-stroke, hours of training, and lesion volume

(Supplementary Table 3).

Table 2 Results of behavioural analyses in Experiment 1 and Experiment 2 (ANOVAs)

EXPERIMENT 1

Accuracy

F DF-b DF-w P

Time 65.427 1 17 50.001

Treatment 69.163 1 17 50.001

Time � Treatment 29.109 1 17 50.001

Reaction time

F DF-b DF-w P

Time 11.766 1 17 50.001

Treatment 29.170 1 17 50.001

Time � Treatment 23.859 1 17 50.001

EXPERIMENT 2

Accuracy

F DF-b DF-w P

Time 14.377 1 17 0.001

Treatment 10.672 1 17 0.005

Cueing 29.050 3 51 50.001

Time � Treatment 24.279 1 17 50.001

Time � Cueing 1.266 3 51 0.296

Treatment � Cueing 3.701 3 51 0.017

Time � Treatment � Cueing 11.145 3 51 50.001

Reaction time

F DF-b DF-w P

Time 12.275 1 17 0.003

Treatment 26.498 1 17 50.001

Cueing 61.631 3 51 50.001

Time � Treatment 17.216 1 17 0.001

Time � Cueing 3.170 3 51 0.032

Treatment � Cueing 3.998 3 51 0.012

Time � Treatment � Cueing 0.145 3 51 0.932

F = F-test; DF-b = degrees of freedom between; DF-w = degrees of freedom within; P = P-values.
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Experiment 2: cued-naming
behavioural data

Accuracy

As predicted—and consistent with Experiment 1—the

Time � Treatment interaction (see Table 2 and Fig. 3C

for ANOVAs results) showed that naming of treated

items was more accurate at T2 (91%) than T1 (76%),

and this unstandardized effect size (15%) was significantly

greater (P5 0.001) than the difference between untreated

items at T2 (80%) and T1 (79%). There were also

significant main effects of Time (more accurate at T2

than T1) and Treatment (driven by the treatment effects

at T2).

Figure 3 Behavioural results of Experiment 1 (A–B) and Experiment 2 (C–D). Dispersions represent standard errors of the mean

(SEM). Significance of post hoc comparisons: *P4 0.05; **P4 0.01; ***P4 0.005; ****P4 0.001; n.s. = non-significant. For Experiment 1, ANOVAs

reported are run across T1 and T2 only, for consistency with all other analyses (results at T3 are reported to show performance at follow-up).

Note that (C) illustrates that the differences between untreated and ‘to-be-treated’ items at T1 were either non-significant or counter the

predicted direction (i.e. UNT4TRE#), whereas at T2 all differences were significant and in line with the predicted direction (TRE4UNT).

% = percentage of correct responses; F = final; I = initial; N = noise; TRE = treated items (at T1, TRE# = ‘to-be-treated’ items); UNT = untreated

items; W = word.
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There was also a significant main effect of Cueing. Across

time points, accuracy was highest for word cues (93%) and

least for no cues (65%). Time � Treatment � Cueing inter-

action showed that cueing modulated the effect of treat-

ment on naming accuracy (i.e. treated versus untreated

items) at T2 compared to T1. This also resulted in a sig-

nificant Treatment � Cueing interaction, whereas the

Time � Cueing interaction was not significant.

Having factored out any potential bias between the two

pools of naming stimuli (‘to-be-treated’ versus untreated

items) at T1 (cf. Fig. 3C and Supplementary material), we

focus on post hoc analyses of naming differences at T2.

Naming for treated (relative to untreated) items improved

as follows for each cue-type: whole words from 93% to

99% ( + 6%), initial phonemes from 88% to 96% ( + 8%),

final phonemes from 79% to 90% ( + 11%), noise-control

from 60% to 79% ( + 19%; all P5 0.05). Note the prob-

able ceiling effects observed here where at T2 the degree of

naming improvement post-treatment across cue-types was

inversely proportional to the degree of possible improve-

ment from T1 scores (i.e. the more room there was for

improvement, the more they improved with treatment).

Reaction time

These results mirrored the naming accuracy results with one

exception. Here, the Time � Treatment � Cueing interaction

was not significant. The Time � Treatment interaction (Table

2 and Fig. 3D) showed that naming of treated items was

faster at T2 (1326 ms) than T1 (1499 ms), and this unstan-

dardized effect size (12%) was significantly greater

(P5 0.001) than the difference between untreated items at

T2 (1433 ms) and T1 (1519 ms). The Time � Cueing inter-

action showed that RT was modulated differently by cue-

types at T1 and T2. The Treatment � Cueing interaction

showed that reductions in RT following treatment were sig-

nificantly modulated by cue-types.

Again, having factored out any potential bias between

the two pools of stimuli (‘to-be-treated’ versus untreated

items) at T1 (cf. Fig. 3D and Supplementary material), we

focus on post hoc analyses of RT differences at T2. At T2

naming RT for treated (relative to untreated) items im-

proved as follows for each cue-type: whole words 78 ms

( + 6%), initial phonemes 93 ms ( + 7%), final phoneme

105 ms ( + 7%), noise-control 154 ms ( + 9%; all

P50.005). Consistent with the improvements observed

in naming accuracy post-treatment, the naming gains in

RT were visible for all treated items across all cue-types,

and cueing effects were observed irrespective of whether

they were used in treatment or not. Results also showed

significant main effects of Time (T2 faster than T1),

Treatment (at T2), and Cueing (fastest for word cues and

slowest for no cues).

Overall, our behavioural results from Experiment 2 on a

cued-naming task replicated those from Experiment 1 on

free-naming task. There was a significant positive effect of

the anomia treatment on the patients’ naming performance,

improving both accuracy and RT for treated items more than

untreated items. Furthermore, Experiment 2 showed that the

effect of treatment was greatest in the noise-control naming

trials. These cues had no priming effects on naming perform-

ance, so data from these trials are most similar to free-

naming (i.e. non-facilitated) performance (Experiment 1).

Neuroimaging data

Time

First, we assessed whether the simple effect of time elapsed

between the two measures (T1, T2) had any impact on

brain activity. Both contrasts T14T2 and T24T1 did

not show any significant results even though accuracy

was higher and RT was faster at T2.

Immediate facilitation of naming (cueing)

Second, we identified the neural network associated with the

immediate facilitation effects of phonemic cues paired during

naming by contrasting items paired with (i) whole word,

initial and final phoneme cues (‘Cued’); and (ii) noise-control

cue (‘Control’). The contrast Control4Cued resulted in a

significant neural priming effect, i.e. reduced BOLD response

for cued items as compared to noise-control items. Bilateral

reductions were observed in the dorsal anterior cingulate

cortex, supplementary motor area, premotor cortex (precen-

tral gyri), and opercular inferior frontal cortex. Right later-

alized reductions were observed in the anterior insula,

extending into the adjacent orbital and triangular inferior

frontal cortex, plus in the posterior superior temporal

sulcus extending into the adjacent superior and middle tem-

poral cortices (Table 3 and Fig. 4A). These results defined a

functional ‘cueing network’ supporting naming performance.

The reverse contrast (Cued4Control) did not show any

significant result, although a sub-threshold peak was identi-

fied in the precuneus (Table 3).

Long-term facilitation of naming (treatment)

Third, we characterized the long-term facilitation effects of

anomia treatment on naming (i.e. effect of treated versus un-

treated items at T2 only). The contrast Untreated4Treated

did not show any significant activations at the whole-brain

level. When the statistical threshold was lowered (P5 0.001

unc.) and a small-volume correction applied within the

‘cueing network’ identified with the orthogonal contrast

Control4Cued, the following regions were identified: right

anterior insula, dorsal anterior cingulate cortex, and opercular

inferior frontal cortex; plus left premotor cortex (Table 3 and

Fig. 4B). The effect of treatment in these areas mirrored that

seen for cueing—i.e. a reduction in BOLD response when

naming response was facilitated by treatment (or cueing).

The reverse contrast Treated4Untreated showed a signifi-

cant cluster of activation located in the precuneus and the

adjacent posterior cingulate cortex (Fig. 4C), but no signifi-

cant activation within the ‘cueing network’.
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Partial cues versus whole-word cues (within-cues)

Fourth, we investigated whether the different auditory cue-

types that contained varying amounts of phonemic/seman-

tic information—i.e. whole words, initial phonemes, final

phonemes—had a differential effect on brain activity during

picture naming, considering that differential behavioural

effects of cue-types were identified in terms of naming ac-

curacy and RT between them (Fig. 3C and D). The con-

trasts Initial4 Final and Final4 Initial did not show any

significant results, so we grouped Initial and Final cues to-

gether (i.e. ‘Partial’) for further analyses. The contrast

Partial4Words identified significant clusters of activation

in the left supplementary motor area, and right anterior

insula and triangular inferior frontal cortex (within the

‘cueing network’), as well as in the right basal ganglia

(Table 3 and Fig. 4D). The contrast Words4Partial

showed a significant activation in the right angular gyrus

(Table 3 and Fig. 4E). Importantly, results were replicated

when initial and final cues were compared with words sep-

arately (i.e. Initial4Words and Final4Words, and vice-

versa; cf. Table 3).

In summary, neuroimaging results showed a substantial

overlap between the neural mechanisms implicated in im-

mediate and long-term facilitation of picture naming in

chronic aphasic stroke patients. Furthermore, different

auditory cues facilitating picture naming recruited different

Table 3 Functional MRI results

Contrast Control4Cued Untreated4Treated

Region x y z P(FWE) K Z x y z P(SVC) K Z

R anterior insular cortex 42 23 �4 50.001 112 6.22 33 26 5 0.003 108 4.17

R/L supplementary motor area 0 8 56 50.001 271 6.85 �3 5 65 0.082 163 3.25

R dorsal anterior cingulate cortex 9 20 35 5.74 3 20 44 0.022 3.67

L dorsal anterior cingulate cortex �6 20 38 5.55 �6 17 35 0.944 1 1.68

R inferior frontal gyrus (opercular) 42 11 29 50.001 109 6.12 45 8 23 0.022 87 3.66

R precentral gyrus 48 8 44 5.02 � � � �

L inferior frontal gyrus (opercular) �42 5 29 50.001 25 5.14 � � � �

L precentral gyrus �45 5 38 4.92 �45 5 38 0.007 25 3.98

R middle temporal cortex 60 �46 11 0.003 10 5.01 � � � �

Contrast Cued`Control Treated`Untreated

Region x y z P(unc.) K Z x y z P(FWE) K Z

R precuneus 6 �55 29 0.003 4 2.70 6 �55 26 50.001 349 6.18

L precuneus � � � � �3 �58 41 5.78

Contrast Partial`Words Initial`Final

Region x y z P(FWE) K Z x y z P(unc.) K Z

R anterior insular cortex 33 26 2 0.004 9 4.93 � � � �

R inferior frontal gyrus (triangular) 42 26 2 4.71 � � � �

L supplementary motor area �3 8 56 0.003 11 5.06 � � � �

R caudate/putamen 15 5 11 50.001 25 5.26 � � � �

Contrast Words`Partial Final` Initial

Region x y z P(FWE) K Z x y z P(unc.) K Z

R angular gyrus 45 �52 32 0.004 9 4.87 � � � �

Contrast Final`Words Initial`Words

Region x y z P(FWE) K Z x y z P(unc.) K Z

R anterior insula 33 23 2 0.012 4 4.68 33 26 2 0.001 225 3.84

R inferior frontal cortex (triangular) 48 26 17 0.020 2 4.77 45 26 5 3.36

L supplementary motor area �3 8 56 50.001 30 5.53 �3 8 56 0.001 4 3.20

R caudate/putamen 15 5 11 50.001 29 5.46 15 5 11 0.001 225 3.66

Contrast Words`Final Words` Initial

Region x y z P(FWE) K Z x y z P(unc.) K Z

R angular gyrus 45 �55 32 0.028 1 4.73 51 �55 35 0.001 96 4.01

R = right; L = left; x y z = MNI coordinates; K = cluster size; Z = z-scores; FWE = family-wise error corrected P-values; SVC = small-volume corrected P-values within the volume of

interest resulting from the contrast ‘Control4Cued’; unc. = uncorrected P-values (reported for completeness).
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Figure 4 Functional MRI results. (A) Reductions in BOLD response related to immediate facilitation of naming. (B) Reductions in BOLD

response related to long-term facilitation of naming. (C) Increased BOLD response for treated (as compared to untreated) items. (D) Activations

related to partial (i.e. initial and final phonemes) cues processing. (E) Activations related to whole word cues processing. Results are displayed at

P5 0.05 (FWE-corr.), except in (B), where they are displayed at P5 0.001 (unc.) for cluster extent, without correction at cluster-level (to allow

for small-volume correction). Red and yellow bars refer to the conditions compared (red4 yellow, as in the title of each contrast). Blue bars are

Continued
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hubs within the residual naming network with whole words

activating right angular gyrus, and partial cues bilateral

frontal regions.

Relationship between naming performance and

brain activity

As a final step, we investigated whether and how individual

patients’ change in brain activity (BOLD response:

Experiment 2) following anomia treatment was related to

their change in free-naming performance (Experiment 1).

More specifically, we tested—for successfully named items

only—whether the change in BOLD response for noise-cued

pictures (Experiment 2) correlated with a change in un-cued

naming RT (speed; Experiment 1). The noise-control cues

had no priming effects on naming performance so data from

these trials are most similar to free-naming (i.e. non-facili-

tated) performance (Experiment 1). First, we extracted the

adjusted BOLD response values (noise-control condition

only) on an individual basis from each of the peak regions

identified with the contrast Untreated4Treated shown to

be sensitive to anomia treatment (right anterior insula, in-

ferior frontal cortex and dorsal anterior cingulate cortex,

plus left premotor cortex) (Table 3). Then, we computed

correlations between individual differences in BOLD re-

sponse for treated and untreated items at T2 (T2_UNT-

TRE) and the corresponding differences between naming

RT scores (in Experiment 1).

Patients’ difference in BOLD response following treat-

ment significantly correlated with treatment-induced im-

provements in naming efficiency in the right anterior

insula (r = 0.51, P = 0.031) and right inferior frontal

cortex (r = 0.57, P = 0.013), but not in the right dorsal an-

terior cingulate cortex and left premotor cortex. These cor-

relations were positive: patients with the greatest right

frontal decreases in BOLD response following treatment

also had the greatest improvement in naming RT (biggest

change in naming speed, i.e. faster) (Fig. 5).

Discussion
In this study we aimed to understand, for the first time,

how speech production in aphasic patients is supported by

neural mechanisms both during anomia treatment (i.e. the

therapeutic process itself), and following anomia treatment

(i.e. longer-term speech outcome). To address this, we de-

livered a high-dose, cued-naming anomia treatment pro-

gramme to a group of chronic aphasic stroke patients

(Experiment 1) and—in the same patients—utilized a func-

tional MRI cued-naming paradigm that mirrored the ther-

apy approach, before and directly after the treatment

(Experiment 2). We found significant treatment-specific ef-

fects, both in terms of naming improvements (RT and ac-

curacy) and brain activity (BOLD signal), with immediate

facilitation of naming performance and longer-term facili-

tation of naming (post-treatment) supported by the same

bilateral residual neural network. Furthermore, patients’

treatment outcome (free-naming efficiency – RT) was dir-

ectly related to neural priming (decreases in BOLD signal)

in right frontal cortices. These data suggest that language

homologue regions in the right hemisphere play an active

and facilitatory role in chronic aphasic stroke patients’

anomia treatment response. Interestingly, naming accompa-

nied by whole word cues activated the right angular gyrus,

while partial cues (initial and final phonemic cues) activated

bilateral frontal regions.

Like our first experiment (Experiment 1), there have been

many behavioural studies focused on changes in aphasic

patients’ speech performance (naming) following anomia

treatment using a cued-naming approach, i.e. treatment

outcome changes (Raymer et al., 2007; Kendall et al.,

2008; Lambon Ralph et al., 2010; Best et al., 2013). This

approach to anomia treatment works, even in the chronic

stage post-stroke, and when given a high dose patients can

make significant long-lasting speech gains (Bhogal et al.,

2003; Brady et al., 2016; also cf. Breitenstein et al.,
2017). However, treatment effects are item-specific with

little-to-no generalization of improvements when naming

untrained items (i.e. only naming of treated items im-

proves). Consistent with this, we found significant treat-

ment effects for treated items only, with long-lasting

maintenance of naming gains observed 3 months post-treat-

ment. The size of our treatment effects was large and ar-

guably greater and/or longer-lasting than those reported in

previous neuroimaging studies (cf. Fridriksson et al., 2007;

Vitali et al., 2007; Rochon et al., 2010; Abel et al., 2014;

van Hees et al., 2014; Dignam et al., 2016). This is likely

due to the higher dose of treatment we delivered (73 h on

average) and the larger pool of items we treated (n = 150).

Surprisingly, none of these studies have investigated how

their adopted anomia treatments work at a brain systems

level and lead to the observed speech change, i.e. brain

plasticity underlying word retrieval during—and as a

longer-term consequence of—therapy. In our study we in-

tended to directly address this question. To do this, we

used a functional MRI task (Experiment 2) based on the

Figure 4 Continued

conditions not included in the contrasts. a.u. = arbitrary unit; AG = angular gyrus; AIC = anterior insular cortex; Control = control trials (i.e.

noise); Cued = cued trials (i.e. word, initial, and final); dACC = dorsal anterior cingulate cortex; F = final; I = initial; IFC = inferior frontal cortex;

N = noise; Partial = partial cues (i.e. initial and final phonemes); PCN = precuneus; PMC = premotor cortex; SMA = supplementary motor area;

TRE = treated items (TRE# = ‘to-be-treated’ items); UNT = untreated items; W = word; Words = whole word cues; x y z = MNI coordinates of

brain sections. Sections are displayed in neurological convention.
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same approach as used in our behavioural therapy

(Experiment 1). This enabled us to identify brain regions

sensitive to our anomia treatment approach both immedi-

ately (during) and directly after (T2) the intervention. We

found that immediate and long-term naming facilitation

relied on a common bilateral neural network. This included

in the right hemisphere the anterior insula, inferior frontal

cortex, and dorsal anterior cingulate cortex; and in the

perilesional left hemisphere the premotor cortex and sup-

plementary motor area.

That the right hemisphere was consistently recruited

during successful picture naming both during and directly

post-treatment in our chronic aphasic patients is striking.

There has long been a debate in the literature about the

role of the right hemisphere in speech and language recov-

ery. While some authors have claimed that its involvement

is detrimental (Naeser et al., 2005; Winhuisen et al., 2005),

others have argued that it might be beneficial (Blasi et al.,

2002; Crinion and Price, 2005). More recently, it has been

shown that language production outcome in chronic apha-

sic patients is associated with structural changes in lan-

guage homologue areas in the right hemisphere (Wan

et al., 2014; Pani et al., 2016; Xing et al., 2016).

The primary supporting evidence of an inhibitory role of

the right hemisphere in aphasic patients’ spoken language

function comes from neurostimulation studies. Here, low

frequency repetitive (i.e. inhibitory) transcranial magnetic

stimulation applied to the right inferior frontal cortex

(Broca’s area homologue) has been associated with im-

proved naming abilities (Martin et al., 2004; Naeser

et al., 2005; for a meta-analysis, see also Ren et al.,

2014). While the contradictions in the literature about

this still need to be solved, it has been suggested that the

mechanisms elicited by neurostimulation might not be as

straightforward as previously outlined, inviting us to inter-

pret this with caution. Indeed, issues such as the nature of

the relationship between inhibitory and excitatory balance

within a reorganizing bi-hemispheric language network, the

relationship between short- and long-term effects of neuro-

stimulation, and the interplay between specific subparts of

the language network and their right hemisphere homo-

logues are still rather unclear (Turkeltaub, 2015).

The set of prefrontal areas we identified included not

only regions that might be considered right homologues

of well-known speech and language network hubs (inferior

frontal cortex, anterior insula, premotor cortex—especially

related to phonological processing) (Bamiou et al., 2003;

Liakakis et al., 2011), but also regions involved in execu-

tive processes and domain-general or multiple-demand sys-

tems (dorsal anterior cingulate cortex and supplementary

motor area) (Duncan, 2010; Fedorenko et al., 2013;

Fedorenko, 2014; Hertrich et al., 2016). Within our

study design, we cannot tease apart the different role

each of these regions contributed to naming. However, it

is interesting to note that these regions were consistently

modulated by task difficulty, i.e. hard versus easy naming

conditions, as indexed by RT and accuracy. For example,

for each of the functional MRI contrasts: Control4Cued,

Untreated4Treated, and Partial4Words, BOLD activity

within these regions was higher (Table 3).

In contrast, a posterior hub (precuneus) was associated

with increased activation for the ‘easier’ naming conditions

(Treated4Untreated; Cued4Control). The precuneus is a

core hub of the so-called ‘default mode network’ (Raichle

et al., 2001; Greicius et al., 2003), whose activity has been

shown to be anti-correlated to task engagement

(McKiernan et al., 2003; Pfefferbaum et al., 2011).

Interestingly, in most previous studies of aphasic patients

its activity has been systematically reported to be modu-

lated by behavioural changes following therapeutic inter-

ventions (Fridriksson et al., 2007; Vitali et al., 2007;

Menke et al., 2009; Fridriksson, 2010; Rochon et al.,

2010; Abel et al., 2014, 2015; van Hees et al., 2014), al-

though typically as a secondary or complementary result.

Figure 5 Correlation between behaviour and brain activ-

ity in the right anterior insular cortex (A) and in the right

inferior frontal cortex (B). Plots show the relationship between

naming efficiency (computed as the difference between mean RT:

untreated-treated items at T2) and corresponding changes in BOLD

response (i.e. untreated-treated) extracted during the noise-control

condition. A greater improvement in naming efficiency (delta RT) is

associated with greater changes in BOLD response (delta BOLD). R

AIC = right anterior insular cortex; R IFC = right inferior frontal

cortex; a.u. = arbitrary unit.
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Given the sensitivity of this neural structure to task engage-

ment and its possible implication in treatment response,

further investigation on the role of the precuneus in lan-

guage recovery may be of interest in future studies.

Following treatment, only activation change in right an-

terior insula/inferior frontal cortex correlated significantly

with improved naming efficiency (Fig. 5). This indicates a

specific involvement of these regions in our patients’ recov-

ery. We interpret this result as a consequence of our

anomia treatment: the repeated pairing of cue and picture

during treatment primed these right hemisphere regions

(decreased BOLD signal) and facilitated more efficient

word retrieval (faster and more accurate naming). This

treatment approach made a naming task that was hard

for the patients at the outset easier by utilizing and opti-

mizing their residual right hemisphere speech networks.

Furthermore, similar neural mechanisms were involved

in immediate and long-term facilitation of word retrieval.

A significant neural priming effect during naming (i.e.

reduced BOLD response) was observed for (i) cued items

compared to control items; as well as for (ii) treated items

compared to untreated items (i.e. as a consequence of the

treatment undertaken). This suggests that neural priming

mechanisms within the naming network underlie the pa-

tients’ immediate facilitation (faster RT) when naming

cued pictures. Treatment (mass practice) then consolidated

these mechanisms leading to further neural priming within

the same network and faster naming RT when patients

named the treated items (T2). This is consistent with cog-

nitive models of speech production proposing that the

phonemic cueing approach used in anomia treatment

relies upon the same processes underlying cued-picture

naming priming effects found in healthy speakers (Best

et al., 2002; Nickels, 2002). Phonemic cues presented con-

currently with a picture to-be-named prime the retrieval of

a correct phonological word form, reduce lexical selection

demands, and result in faster naming responses (Miceli

et al., 1996).

Indeed, different auditory cues had differential effects on

the patients’ immediate naming performance and right

hemisphere brain activation patterns. This suggests that

they may have been facilitating residual speech functions

by tapping into different underlying neural and/or cognitive

mechanisms. When given partial cues (initial and final

phonemes), picture naming was more demanding/harder

(as indexed by slower and less accurate responses) than

naming with whole word cues (cf. Fig. 4D). Partial cues

activated bilateral frontal regions, while whole word cues

activated the right angular gyrus (Fig. 4E). Interestingly,

this pattern was reversed in the case of treated items,

whereby partial cues elicited a BOLD response similar to

whole words (cf. Fig. 4D and E).

By definition, partial cues share only part of the phono-

logical information of the target word, so that patients still

need to retrieve the lexical, phonological and semantic rep-

resentations of the target word. These cues probably act by

priming phonologically similar words, thereby reducing

competition among antagonist lexical representations

(Aristei et al., 2012; Vitkovitch and Cooper, 2012;

Melinger and Abdel Rahman, 2013; Britt et al., 2016;

but see Mahon et al., 2007 and Navarrete et al., 2014

for alternative views), eventually improving word search

and retrieval in patients. In healthy subjects, the left inferior

frontal cortex has been reported to be implicated in phono-

logical processing (Poldrack et al., 1999), word retrieval

(Grabowski et al., 1998; Sharp et al., 2005), and articula-

tory planning (Price, 2010). On the other hand, recent neu-

rostimulation studies have shown that the right inferior

frontal cortex is also crucially implicated in phonological

processing and object naming (Hartwigsen et al., 2010;

Sollmann et al., 2014). In aphasic patients, perilesional

areas in the inferior frontal cortex have been shown to

play a vital role in aphasia recovery (Fridriksson, 2010;

Fridriksson et al., 2012). Moreover, the right homologue

of Broca’s area was found activated during word retrieval

in patients with lesions to the left inferior frontal cortex

(Perani et al., 2003).

In contrast, whole word cues provide the full lexical,

phonological and semantic forms of the target word. As

such, it could be argued that it is an ‘easier’ naming con-

dition, and indeed patients may not have been using lexical

retrieval processes per se, but rather word repetition pro-

cesses to complete the task (Nozari et al., 2010). In healthy

subjects, the left angular gyrus has been implicated in se-

mantic processing (Mechelli et al., 2007; Price, 2010;

Seghier et al., 2010), language comprehension and sentence

processing (Sakai et al., 2001; Dronkers et al., 2004), and

verbal working memory (Clark et al., 2001). In aphasic

patients, lesions in the left angular gyrus were associated

with impaired sentence comprehension and verbal working

memory (Newhart et al., 2012), whereas in patients with

extensive damage to the language network in the left hemi-

sphere the right angular gyrus was found activated during

semantic processing (Sims et al., 2016).

In summary, the present study aimed to understand—

for the first time—the neural mechanisms underlying the

phonemic cueing therapeutic process involved in anomia

treatment, and post-treatment longer-term speech out-

come in chronic aphasic patients. Our main result

shows that immediate facilitation of naming perform-

ance using a cued-naming approach, and long-term fa-

cilitation of naming post-treatment are supported by a

common bilateral residual neural network, including the

anterior insula, inferior frontal cortex, and dorsal anter-

ior cingulate cortex in the right hemisphere; the pre-

motor cortex and supplementary motor area in the left

hemisphere.

We have presented a new technique for evaluating the

effect of anomia treatment in aphasia patients. The novel

protocol we provide can be used as a framework for

brain and behavioural plasticity in the damaged brain

from which researchers and clinicians can optimize cur-

rent anomia treatment approaches, develop new treat-

ments, and ultimately improve speech outcome for
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aphasic patients. Future studies in our lab utilizing this

approach will aim to investigate individual patients’ re-

sponses and make predictions about the therapeutic out-

come. We hope this will lead to better patients’

stratification (e.g. identification of good candidates for

this approach), optimizing both treatment path and

outcome.
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