144 research outputs found
INdigenous Systems and Policies Improved and Reimagined for Ear and hearing care (INSPIRE): A multi-method study protocol
Introduction Otitis media (middle ear disease) severity and chronicity among Aboriginal and Torres Strait Islander people, as well as gaps in socioeconomic outcomes related to hearing loss, indicates a breakdown in the current ear and hearing care system. The ear and hearing care system spans multiple sectors due to long-term impacts of otitis media and hearing loss in health, education and employment, necessitating a multi-disciplinary cross-sectorial approach to ear and hearing care. Public policies shape the current ear and hearing care system and here it is argued that a critical public policy analysis across different sectors is needed, with strong Aboriginal and Torres Strait Islander leadership and guidance. The current study aims to establish consensus-based ear and hearing care policy solutions for Aboriginal and Torres Strait Islander people in Australia. Methods and analysis This multi-method study will be guided by a Brains Trust with strong Aboriginal and Torres Strait Islander leadership. Public policies in hearing health, social services, and education will be scoped to identify policy gaps, using the World Health Organization framework. Qualitative data will be collected through a culturally specific process of yarning circles to identify policy challenges and/or limitations in enabling accessible ear and hearing care programs/services for Aboriginal and Torres Strait Islander people, using dimensions of Morestin's public policy appraisal tool as an interview guide for stakeholders. Themes from the yarning circles will be used to inform an expert Delphi process to establish consensus-based policy solutions for optimising the ear and hearing care system for Aboriginal and Torres Strait Islander people. Ethics and dissemination This study has approval from the Australian Institute of Aboriginal and Torres Strait Islander Studies Ethics Committee. Study findings will be disseminated to community through Brains Trust members and study participants, as well as through publications in peer-reviewed journals and research forum presentations
Non-invasive MRI quantification of cerebrospinal fluid dynamics in amyotrophic lateral sclerosis patients.
BACKGROUND: Developing novel therapeutic agents to treat amyotrophic lateral sclerosis (ALS) has been difficult due to multifactorial pathophysiologic processes at work. Intrathecal drug administration shows promise due to close proximity of cerebrospinal fluid (CSF) to affected tissues. Development of effective intrathecal pharmaceuticals will rely on accurate models of how drugs are dispersed in the CSF. Therefore, a method to quantify these dynamics and a characterization of differences across disease states is needed.
METHODS: Complete intrathecal 3D CSF geometry and CSF flow velocities at six axial locations in the spinal canal were collected by T2-weighted and phase-contrast MRI, respectively. Scans were completed for eight people with ALS and ten healthy controls. Manual segmentation of the spinal subarachnoid space was performed and coupled with an interpolated model of CSF flow within the spinal canal. Geometric and hydrodynamic parameters were then generated at 1 mm slice intervals along the entire spine. Temporal analysis of the waveform spectral content and feature points was also completed.
RESULTS: Comparison of ALS and control groups revealed a reduction in CSF flow magnitude and increased flow propagation velocities in the ALS cohort. Other differences in spectral harmonic content and geometric comparisons may support an overall decrease in intrathecal compliance in the ALS group. Notably, there was a high degree of variability between cases, with one ALS patient displaying nearly zero CSF flow along the entire spinal canal.
CONCLUSION: While our sample size limits statistical confidence about the differences observed in this study, it was possible to measure and quantify inter-individual and cohort variability in a non-invasive manner. Our study also shows the potential for MRI based measurements of CSF geometry and flow to provide information about the hydrodynamic environment of the spinal subarachnoid space. These dynamics may be studied further to understand the behavior of CSF solute transport in healthy and diseased states
Gene products and processes contributing to lanthanide homeostasis and methanol metabolism in \u3cem\u3eMethylorubrum extorquens\u3c/em\u3e AM1
Lanthanide elements have been recently recognized as “new life metals” yet much remains unknown regarding lanthanide acquisition and homeostasis. In Methylorubrum extorquens AM1, the periplasmic lanthanide-dependent methanol dehydrogenase XoxF1 produces formaldehyde, which is lethal if allowed to accumulate. This property enabled a transposon mutagenesis study and growth studies to confirm novel gene products required for XoxF1 function. The identified genes encode an MxaD homolog, an ABC-type transporter, an aminopeptidase, a putative homospermidine synthase, and two genes of unknown function annotated as orf6 and orf7. Lanthanide transport and trafficking genes were also identified. Growth and lanthanide uptake were measured using strains lacking individual lanthanide transport cluster genes, and transmission electron microscopy was used to visualize lanthanide localization. We corroborated previous reports that a TonB-ABC transport system is required for lanthanide incorporation to the cytoplasm. However, cells were able to acclimate over time and bypass the requirement for the TonB outer membrane transporter to allow expression of xoxF1 and growth. Transcriptional reporter fusions show that excess lanthanides repress the gene encoding the TonB-receptor. Using growth studies along with energy dispersive X-ray spectroscopy and transmission electron microscopy, we demonstrate that lanthanides are stored as cytoplasmic inclusions that resemble polyphosphate granules
Primary and malignant cholangiocytes undergo CD40 mediated Fas dependent Apoptosis, but are insensitive to direct activation with exogenous fas ligand
Introduction
Cholangiocarcinoma is a rare malignancy of the biliary tract, the incidence of which is rising, but the pathogenesis of which remains uncertain. No common genetic defects have been described but it is accepted that chronic inflammation is an important contributing factor. We have shown that primary human cholangiocyte and hepatocyte survival is tightly regulated via co-operative interactions between two tumour necrosis family (TNF) receptor family members; CD40 and Fas (CD95). Functional deficiency of CD154, the ligand for CD40, leads to a failure of clearance of biliary tract infections and a predisposition to cholangiocarcinoma implying a direct link between TNF receptor-mediated apoptosis and the development of cholangiocarcinoma.
Aims
To determine whether malignant cholangiocytes display defects in CD40 mediated apoptosis. By comparing CD40 and Fas-mediated apoptosis and intracellular signalling in primary human cholangiocytes and three cholangiocyte cell lines.
Results
Primary cholangiocytes and cholangiocyte cell lines were relatively insensitive to direct Fas-mediated killing with exogenous FasL when compared with Jurkat cells, which readily underwent Fas-mediated apoptosis, but were extremely sensitive to CD154 stimulation. The sensitivity of cells to CD40 activation was similar in magnitude in both primary and malignant cells and was STAT-3 and AP-1 dependent in both.
Conclusions
1) Both primary and malignant cholangiocytes are relatively resistant to Fas–mediated killing but show exquisite sensitivity to CD154, suggesting that the CD40 pathway is intact and fully functional in both primary and malignant cholangiocytes 2) The relative insensitivity of cholangiocytes to Fas activation demonstrates the importance of CD40 augmentation of Fas dependent death in these cells. Agonistic therapies which target CD40 and associated intracellular signalling pathways may be effective in promoting apoptosis of malignant cholangiocytes
Brucella suis Seroprevalence and Associated Risk Factors in Dogs in Eastern Australia, 2016 to 2019
Brucella suis is a zoonotic disease of feral pigs that also affects pig hunting dogs, pig hunters, veterinarians and veterinary staff. In recent years the incidence of B. suis in the eastern Australian states of New South Wales (NSW) and Queensland (QLD) has increased. A cross-sectional study was conducted to document the seroprevalence, geographical extent and risk factors for B. suis in dogs at-risk of contracting the disease. Eligible dogs were those that were known to hunt or consume feral pig meat. Dogs were enrolled through private veterinary clinics and/or directly by District Veterinarians in six regions of NSW and QLD. Blood was collected by venepuncture and tested for B. suis antibodies using the Rose Bengal Test (RBT) followed by a Complement Fixation Test (CFT) if they returned a positive RBT. Owners were invited to complete a questionnaire on the dogs' signalment, husbandry including hunting practices and locations, and any clinical signs referable to brucellosis. Of the 317 dogs included in the prevalence survey, 21 were seropositive returning a survey-adjusted true seroprevalence of 9.3 (95% CI 0.45 to 18) B. suis positive dogs per 100 dogs at-risk. True seroprevalence ranged from 0 to 24 B. suis positive dogs per 100 across eastern Australia, with the highest prevalence in central west NSW and southern QLD. Adjusted for other factors, dogs that shared a household with other seropositive dogs and those that traveled away from their home regions to hunt were more likely to be seropositive. Clinical signs at presentation were not predictive of serostatus, with seropositive and seronegative dogs equally likely to present with signs consistent with brucellosis. The results obtained from this study show that B. suis exposure is relatively common in dogs that have contact with feral pigs, with one in 10 testing seropositive. Further studies are needed to understand the progression and risk of transmission from seropositive dogs
Lineage-specific dynamic and pre-established enhancer–promoter contacts cooperate in terminal differentiation
Chromosome conformation is an important feature of metazoan gene regulation; however, enhancer–promoter contact remodeling during cellular differentiation remains poorly understood. To address this, genome-wide promoter capture Hi-C (CHi-C) was performed during epidermal differentiation. Two classes of enhancer–promoter contacts associated with differentiation-induced genes were identified. The first class ('gained') increased in contact strength during differentiation in concert with enhancer acquisition of the H3K27ac activation mark. The second class ('stable') were pre-established in undifferentiated cells, with enhancers constitutively marked by H3K27ac. The stable class was associated with the canonical conformation regulator cohesin, whereas the gained class was not, implying distinct mechanisms of contact formation and regulation. Analysis of stable enhancers identified a new, essential role for a constitutively expressed, lineage-restricted ETS-family transcription factor, EHF, in epidermal differentiation. Furthermore, neither class of contacts was observed in pluripotent cells, suggesting that lineage-specific chromatin structure is established in tissue progenitor cells and is further remodeled in terminal differentiation
CD40 signaling predicts response to preoperative trastuzumab and concomitant paclitaxel followed by 5-fluorouracil, epirubicin, and cyclophosphamide in HER-2-overexpressing breast cancer
Introduction We performed gene expression analysis to identify molecular predictors of resistance to preoperative concomitant trastuzumab and paclitaxel followed by 5-fluorouracil, epirubicin, and cyclophosphamide (T/FEC). Methods Pretreatment fine-needle aspiration specimens from 45 patients with HER-2-overexpressing stage II to IIIA breast cancer were subjected to transcriptional profiling and examined for differential expression of various genes and gene sets. The primary endpoint for tumor response was pathologic complete response (pCR). Correlations between pCR and gene expression were sought. Results The overall pCR rate was 64%. Age, nuclear grade, tumor size, nodal status, quantitative expression of estrogen and HER-2 receptor mRNA, and HER-2 gene copy number showed no correlation with pCR. Results of gene set enrichment analysis suggested that the lower expression of genes involved with CD40 signaling is associated with a greater risk of residual cancer after the preoperative chemotherapy that includes trastuzumab. Conclusion CD40 signaling may play a role in determining response to trastuzumab-plus-T/FEC therapy in patients with HER-2-overexpressing breast cancer.PubMedWoSScopu
The global and promoter-centric 3D genome organization temporally resolved during a circadian cycle
Funder: FP7 Ideas: European Research Council; doi: http://dx.doi.org/10.13039/100011199; Grant(s): 259743Abstract: Background: Circadian gene expression is essential for organisms to adjust their physiology and anticipate daily changes in the environment. The molecular mechanisms controlling circadian gene transcription are still under investigation. In particular, how chromatin conformation at different genomic scales and regulatory elements impact rhythmic gene expression has been poorly characterized. Results: Here we measure changes in the spatial chromatin conformation in mouse liver using genome-wide and promoter-capture Hi-C alongside daily oscillations in gene transcription. We find topologically associating domains harboring circadian genes that switch assignments between the transcriptionally active and inactive compartment at different hours of the day, while their boundaries stably maintain their structure over time. To study chromatin contacts of promoters at high resolution over time, we apply promoter capture Hi-C. We find circadian gene promoters displayed a maximal number of chromatin contacts at the time of their peak transcriptional output. Furthermore, circadian genes, as well as contacted and transcribed regulatory elements, reach maximal expression at the same timepoints. Anchor sites of circadian gene promoter loops are enriched in DNA binding sites for liver nuclear receptors and other transcription factors, some exclusively present in either rhythmic or stable contacts. Finally, by comparing the interaction profiles between core clock and output circadian genes, we show that core clock interactomes are more dynamic compared to output circadian genes. Conclusion: Our results identify chromatin conformation dynamics at different scales that parallel oscillatory gene expression and characterize the repertoire of regulatory elements that control circadian gene transcription through rhythmic or stable chromatin configurations
The adjuvant GLA-SE promotes human Tfh cell expansion and emergence of public TCRβ clonotypes
The generation of protective humoral immunity after vaccination relies on the productive interaction between antigen-specific B cells and T follicular helper (Tfh) cells. Despite the central role of Tfh cells in vaccine responses, there is currently no validated way to enhance their differentiation in humans. From paired human lymph node and blood samples, we identify a population of circulating Tfh cells that are transcriptionally and clonally similar to germinal center Tfh cells. In a clinical trial of vaccine formulations, circulating Tfh cells were expanded in Tanzanian volunteers when an experimental malaria vaccine was adjuvanted in GLA-SE but not when formulated in Alum. The GLA-SE–formulated peptide was associated with an increase in the extrafollicular antibody response, long-lived antibody production, and the emergence of public TCRβ clonotypes in circulating Tfh cells. We demonstrate that altering vaccine adjuvants is a rational approach for enhancing Tfh cells in humans, thereby supporting the long-lived humoral immunity that is required for effective vaccines.</jats:p
- …