35 research outputs found

    Spherical harmonic decomposition applied to spatial-temporal analysis of human high-density EEG

    Full text link
    We demonstrate an application of spherical harmonic decomposition to analysis of the human electroencephalogram (EEG). We implement two methods and discuss issues specific to analysis of hemispherical, irregularly sampled data. Performance of the methods and spatial sampling requirements are quantified using simulated data. The analysis is applied to experimental EEG data, confirming earlier reports of an approximate frequency-wavenumber relationship in some bands.Comment: 12 pages, 8 figures, submitted to Phys. Rev. E, uses APS RevTeX style

    Optogenetics and deep brain stimulation neurotechnologies

    Full text link
    Brain neural network is composed of densely packed, intricately wired neurons whose activity patterns ultimately give rise to every behavior, thought, or emotion that we experience. Over the past decade, a novel neurotechnique, optogenetics that combines light and genetic methods to control or monitor neural activity patterns, has proven to be revolutionary in understanding the functional role of specific neural circuits. We here briefly describe recent advance in optogenetics and compare optogenetics with deep brain stimulation technology that holds the promise for treating many neurological and psychiatric disorders

    Spatial-temporal structures of human alpha rhythms: theory, microcurrent sources, multiscale measurements, and global binding of local networks

    No full text
    A theoretical framework supporting experimental measures of dynamic properties of human EEG is proposed with emphasis on distinct alpha rhythms. Robust relationships between measured dynamics and cognitive or behavioral conditions are reviewed, and proposed physiological bases for EEG at cellular levels are considered. Classical EEG data are interpreted in the context of a conceptual framework that distinguishes between locally and globally dominated dynamic processes, as estimated with coherence or other measures of phase synchronization. Macroscopic (scalp) potentials generated by cortical current sources are described at three spatial scales, taking advantage of the columnar structure of neocortex. New EEG data demonstrate that both globally coherent and locally dominated behavior can occur within the alpha band, depending on narrow band frequency, spatial measurement scale, and brain state. Quasi-stable alpha phase structures consistent with global standing waves are observed. At the same time, alpha and theta phase locking between cortical regions during mental calculations is demonstrated, consistent with neural network formation. The brain-binding problem is considered in the context of EEG dynamic behavior that generally exhibits both of these local and global aspects. But specific experimental designs and data analysis methods may severely bias physiological interpretations in either local or global directions

    Coherence and alpha-band topography using high-resolution EEG techniques

    No full text
    Abstract not available

    Macrocephaly in neurofibromatosis type 1: a sign post for optic pathway gliomas?

    Get PDF
    Optic pathway gliomas, which occur in 15-20% of paediatric patients with neurofibromatosis type 1, are the most common central nervous system tumour associated with this neurocutaneous disorder. The detection of optic pathway gliomas is essential for further management but is often delayed in infancy due to oligosymptomatic progression and difficulties in clinical detection. Therefore, the aim of our study was to find a clinical indicator for the presence of optic pathway gliomas in children with neurofibromatosis type 1 in order to facilitate early diagnosis and initiate further ophthalmological and neuroimaging investigations

    Acute effects of thalamic deep brain stimulation and thalamotomy on sensorimotor cortex local field potentials in essential tremor

    No full text
    OBJECTIVE: Essential tremor (ET) is characterized by an action tremor believed to be due to excessive theta–alpha activity in the cerebello–thalamo–cortical system. This study aimed to test the hypothesis that therapeutic thalamic stimulation in patients with ET decreases theta–alpha oscillatory activity in primary motor (M1) and sensory (S1) cortices. METHODS: During surgical treatment of ET in 10 patients, an electrocorticography (ECoG) strip electrode was placed temporarily over the arm region of M1 and S1. Local field potentials (LFP) were recorded at rest, during a tremor-inducing posture, during acute therapeutic thalamic stimulation, and following therapeutic thalamotomy (three patients). Power spectral density (PSD) was calculated using the Fast Fourier Transform. RESULTS: At rest, alpha activity (8–13 Hz) in M1 was significantly decreased during high-frequency stimulation, while theta activity (4–8 Hz) decreased in S1. Following thalamotomy, theta and beta (13–30 Hz) was increased in M1. Induction of postural tremor reduced M1 theta, alpha and beta activity compared to the resting state. CONCLUSIONS: High-frequency thalamic deep brain stimulation (DBS) significantly reduces alpha oscillatory activity in the primary motor cortex of patients with ET, though this change is probably not critical for therapeutic efficacy. SIGNIFICANCE: We demonstrate that ECoG can be effectively used to study the effect of subcortical stimulation on cortical oscillations
    corecore