475 research outputs found

    Herba Epimedii: Anti-oxidative properties and its medical implications

    Get PDF
    Herba Epimedii is a Chinese herbal medicine with proven efficacy in treating cardiovascular diseases and osteoporosis, and in improving sexual and neurological functions. This efficacy is found to be related to the potent anti-oxidative ability of Herba Epimedii and its flavonoid components, with icarrin as the main effective constituent, along with polysaccharides and vitamin C. These ingredients have been proven to be effective against oxidative-stress related pathologies (cardiovascular diseases, Alzheimer's disease and inflammation) in animal rodent models and in vitro studies. Their antioxidative properties are found to be related to an inductive effect on endogenous freeradical scavenging enzymes such as catalase and glutathione peroxidase and the inherent electron-donating ability of flavonoids. © 2010 licensee MDPI, Basel, Switzerland.published_or_final_versio

    Ionizing Radiation and Chronic Lymphocytic Leukemia

    Get PDF
    The U.S. government recently implemented rules for awarding compensation to individuals with cancer who were exposed to ionizing radiation while working in the nuclear weapons complex. Under these rules, chronic lymphocytic leukemia (CLL) is considered to be a nonradiogenic form of cancer. In other words, workers who develop CLL automatically have their compensation claim rejected because the compensation rules hold that the risk of radiation-induced CLL is zero. In this article we review molecular, clinical, and epidemiologic evidence regarding the radiogenicity of CLL. We note that current understanding of radiation-induced tumorigenesis and the etiology of lymphatic neoplasia provides a strong mechanistic basis for expecting that ionizing radiation exposure increases CLL risk. The clinical characteristics of CLL, including prolonged latency and morbidity periods and a low case fatality rate, make it relatively difficult to evaluate associations between ionizing radiation and CLL risk via epidemiologic methods. The epidemiologic evidence of association between external exposure to ionizing radiation and CLL is weak. However, epidemiologic findings are consistent with a hypothesis of elevated CLL mortality risk after a latency and morbidity period that spans several decades. Our findings in this review suggest that there is not a persuasive basis for the conclusion that CLL is a nonradiogenic form of cancer

    Associations of apolipoprotein E exon 4 and lipoprotein lipase S447X polymorphisms with acute ischemic stroke and myocardial infarction

    Get PDF
    Background: Because apolipoprotein E (apoE) and lipopoprotein lipase (LPL) polymorphisms interact with each other and with other factors to affect lipid metabolism, we sought to determine their separate and combined effects in association with ischemic vascular disease. Methods: We performed a case-control study of 816 subjects: 246 acute ischemic stroke patients, 234 acute myocardial infarction patients, and 336 controls. APOE exon 4 and LPL S447X genotypes were determined. Results: APOE ε2 and ε4 homozygotes were increased in stroke (4.5% vs. 1.0%, p = 0.008), while in myocardial infarction the ε4 allele was increased (12.6% vs. 9.5%, p = 0.006) but ε2 was decreased (3.7% vs. 12.1%, p = 0.000006). For subjects with either APOE ε2 or ε4 alleles, LPL X alleles were increased in vascular disease (OR = 2.2, p = 0.01). LPL X alleles displayed opposite tendencies toward association with disease when subjects were divided by sex, smoking, or APOE genotype. Meta-analysis and regression analysis of previous studies supported the sex and smoking dichotomies. Conclusion: This is the first report of an association of vascular disease with an interaction of APOE exon 4 and LPL S447X genotypes. Therefore, APOE genotypes and LPL S447X interactions with apoE, sex, and smoking may affect the risk of myocardial infarction and ischemic stroke. © 2006 by Walter de Gruyter.published_or_final_versio

    A Systematic Mapping Approach of 16q12.2/FTO and BMI in More Than 20,000 African Americans Narrows in on the Underlying Functional Variation: Results from the Population Architecture using Genomics and Epidemiology (PAGE) Study

    Get PDF
    Genetic variants in intron 1 of the fat mass- and obesity-associated (FTO) gene have been consistently associated with body mass index (BMI) in Europeans. However, follow-up studies in African Americans (AA) have shown no support for some of the most consistently BMI-associated FTO index single nucleotide polymorphisms (SNPs). This is most likely explained by different race-specific linkage disequilibrium (LD) patterns and lower correlation overall in AA, which provides the opportunity to fine-map this region and narrow in on the functional variant. To comprehensively explore the 16q12.2/FTO locus and to search for second independent signals in the broader region, we fine-mapped a 646-kb region, encompassing the large FTO gene and the flanking gene RPGRIP1L by investigating a total of 3,756 variants (1,529 genotyped and 2,227 imputed variants) in 20,488 AAs across five studies. We observed associations between BMI and variants in the known FTO intron 1 locus: the SNP with the most significant p-value, rs56137030 (8.3×10-6) had not been highlighted in previous studies. While rs56137030was correlated at r2>0.5 with 103 SNPs in Europeans (including the GWAS index SNPs), this number was reduced to 28 SNPs in AA. Among rs56137030 and the 28 correlated SNPs, six were located within candidate intronic regulatory elements, including rs1421085, for which we predicted allele-specific binding affinity for the transcription factor CUX1, which has recently been implicated in the regulation of FTO. We did not find strong evidence for a second independent signal in the broader region. In summary, this large fine-mapping study in AA has substantially reduced the number of common alleles that are likely to be functional candidates of the known FTO locus. Importantly our study demonstrated that comprehensive fine-mapping in AA provides a powerful approach to narrow in on the functional candidate(s) underlying the initial GWAS findings in European populations

    An ACAT inhibitor suppresses SARS-CoV-2 replication and boosts antiviral T cell activity

    Get PDF
    The severity of disease following infection with SARS-CoV-2 is determined by viral replication kinetics and host immunity, with early T cell responses and/or suppression of viraemia driving a favourable outcome. Recent studies uncovered a role for cholesterol metabolism in the SARS-CoV-2 life cycle and in T cell function. Here we show that blockade of the enzyme Acyl-CoA:cholesterol acyltransferase (ACAT) with Avasimibe inhibits SARS-CoV-2 pseudoparticle infection and disrupts the association of ACE2 and GM1 lipid rafts on the cell membrane, perturbing viral attachment. Imaging SARS-CoV-2 RNAs at the single cell level using a viral replicon model identifies the capacity of Avasimibe to limit the establishment of replication complexes required for RNA replication. Genetic studies to transiently silence or overexpress ACAT isoforms confirmed a role for ACAT in SARS-CoV-2 infection. Furthermore, Avasimibe boosts the expansion of functional SARS-CoV-2-specific T cells from the blood of patients sampled during the acute phase of infection. Thus, re-purposing of ACAT inhibitors provides a compelling therapeutic strategy for the treatment of COVID-19 to achieve both antiviral and immunomodulatory effects. Trial registration: NCT04318314

    An ACAT inhibitor suppresses SARS-CoV-2 replication and boosts antiviral T cell activity

    Get PDF
    The severity of disease following infection with SARS-CoV-2 is determined by viral replication kinetics and host immunity, with early T cell responses and/or suppression of viraemia driving a favourable outcome. Recent studies uncovered a role for cholesterol metabolism in the SARS-CoV-2 life cycle and in T cell function. Here we show that blockade of the enzyme Acyl-CoA:cholesterol acyltransferase (ACAT) with Avasimibe inhibits SARS-CoV-2 pseudoparticle infection and disrupts the association of ACE2 and GM1 lipid rafts on the cell membrane, perturbing viral attachment. Imaging SARS-CoV-2 RNAs at the single cell level using a viral replicon model identifies the capacity of Avasimibe to limit the establishment of replication complexes required for RNA replication. Genetic studies to transiently silence or overexpress ACAT isoforms confirmed a role for ACAT in SARS-CoV-2 infection. Furthermore, Avasimibe boosts the expansion of functional SARS-CoV-2-specific T cells from the blood of patients sampled during the acute phase of infection. Thus, re-purposing of ACAT inhibitors provides a compelling therapeutic strategy for the treatment of COVID-19 to achieve both antiviral and immunomodulatory effects. Trial registration: NCT04318314

    Efficacy of insect larval meal to replace fish meal in juvenile barramundi, Lates calcarifer reared in freshwater

    Get PDF
    The present experiment was conducted to evaluate the efficacy of dietary protein from black soldier fly, Hermetia illucens, larval meal (BSFL) to replace fish meal (FM) protein in juvenile barramundi, Lates calcarifer. Larvae of black soldier fly were fed with the underutilised crop, sesbania, Sesbania grandiflora. Five isonitrogenous (44% crude protein) and isocaloric (16.0 kJ available energy/g) experimental diets were formulated to replace FM using processed BSFL meal at 0 (control), 25% (BSFL25), 50% (BSFL50), 75% (BSFL75) and 100% (BSFL100). Data for proximate and amino acid analysis suggested BSFL meal as an inferior protein ingredient than FM, but parallel to soybean meal. At the end of 8 weeks of fish feeding trial, there were no significant differences in the average weight gain (WG) and specific growth rate among the group of fish-fed control, BSFL25 and BSFL50 diets (P < 0.05). Although numerical differences were recorded in the fish whole-body proximate composition, crude protein and moisture content were not much affected by the different dietary treatments. Essential amino acids including arginine, histidine, lysine and methionine were found to be higher in the whole body of fish-fed BSFL100 diet. Broken line regression analysis of average WG showed an optimum FM replacement level of 28.4% with BSFL meal. Therefore, the present experiment clearly demonstrates that the maximal dietary inclusion level of BSFL meal as FM protein replacer for the optimum growth of juvenile barramundi reared in freshwater could be greater than 28.4% but less than 50%, without any adverse effects on the fish whole-body proximate and amino acid composition

    Association between Physical Activity and Cardiovascular Risk in Chinese Youth Independent of Age and Pubertal Stage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Childhood and adolescence are critical periods of habit formation with substantial tracking of lifestyle and cardiovascular risk into adulthood. There are various guidelines on recommended levels of physical activity in youth of school-age. Despite the epidemic of obesity and diabetes in China, there is a paucity of data in this regard in Chinese youth. We examined the association of self-reported level of physical activity and cardiovascular risk in Hong Kong Chinese youth of school-age.</p> <p>Methods</p> <p>This was a cross-sectional study conducted in 2007-8 in a school setting with 2119 Hong Kong Chinese youth aged 6-20 years. Physical activity level was assessed using a validated questionnaire, CUHK-PARCY (The Chinese University of Hong Kong: Physical Activity Rating for Children and Youth). A summary risk score comprising of waist circumference, blood pressure, fasting plasma glucose and lipids was constructed to quantify cardiovascular risk.</p> <p>Results</p> <p>In this cohort, 21.5% reported high level of physical activity with boys being more active than girls (32.1% versus 14.1%, p < 0.001). Regression analysis showed physical activity level, sex and pubertal stage were independently associated with cardiovascular risk score.</p> <p>Conclusion</p> <p>Self-reported level of physical activity is associated with cardiovascular risk factors in Chinese youth after adjusting for sex and pubertal stage.</p

    Induction of protein catabolism in myotubes by 15(S)-hydroxyeicosatetraenoic acid through increased expression of the ubiquitin–proteasome pathway

    Get PDF
    The potential role of 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE) as an intracellular signal for increased protein catabolism and induction of the expression of key components of the ubiquitin-proteasome proteolytic pathway induced by a tumour cachectic factor, proteolysis-inducing factor has been studied in murine C2C12 myotubes. 15(S)-HETE induced protein degradation in these cells with a maximal effect at concentrations between 78 and 312 nM. The effect was attenuated by the polyunsaturated fatty acid, eicosapentaenoic acid (EPA). There was an increase in 'chymotrypsin-like' enzyme activity, the predominant proteolytic activity of the proteasome, in the same concentration range as that inducing total protein degradation, and this effect was also attenuated by EPA. 15(S)-hydroxyeicosatetraenoic acid also increased maximal expression of mRNA for proteasome subunits C2 and C5, as well as the ubiquitin-conjugating enzyme, E214k, after 4 h incubation, as determined by quantitative competitive RT-PCR. The concentrations of 15-HETE affecting gene expression were the same as those inducing protein degradation. Western blotting of cellular supernatants of myotubes treated with 15(S)-HETE for 24 h showed increased expression of p42, an ATPase subunit of the regulatory complex at similar concentrations, as well as a decrease in expression of myosin in the same concentration range. 15(S)-hydroxyeicosatetraenoic acid activated binding of nuclear factor-κB (NF-κB) in the myotube nucleus and stimulated degradation of 1-κBα. The effect on the NF-κB/1-κBα system was attenuated by EPA. In addition, the NF-κB inhibitor peptide SN50 attenuated the increased chymotrypsin-like enzyme activity in the presence of 15(S)-HETE. These results suggest that 15(S)-HETE induces degradation of myofibrillar proteins in differentiated myotubes through an induction of an increased expression of the regulatory components of the ubiquitin-proteasome proteolytic pathway possibly through the intervention of the nuclear transcription factor NF-κB, and that this process is inhibited by EPA. © 2003 Cancer Research UK
    corecore