1,276 research outputs found
A Neural-Endocrine Architecture for Foraging in Swarm Robotic Systems
Abstract This paper presents the novel use of the Neural-endocrine architecture for swarm robotic systems. We make use of a number of behaviours to give rise to emergent swarm behaviour to allow a swarm of robots to collaborate in the task of foraging. Results show that the architecture is amenable to such a task, with the swarm being able to successfully complete the required task.
Radial Spoke Proteins of \u3cem\u3eChlamydomonas\u3c/em\u3e Flagella
The radial spoke is a ubiquitous component of `9+2\u27 cilia and flagella, and plays an essential role in the control of dynein arm activity by relaying signals from the central pair of microtubules to the arms. The Chlamydomonas reinhardtii radial spoke contains at least 23 proteins, only 8 of which have been characterized at the molecular level. Here, we use mass spectrometry to identify 10 additional radial spoke proteins. Many of the newly identified proteins in the spoke stalk are predicted to contain domains associated with signal transduction, including Ca2+-, AKAP- and nucleotide-binding domains. This suggests that the spoke stalk is both a scaffold for signaling molecules and itself a transducer of signals. Moreover, in addition to the recently described HSP40 family member, a second spoke stalk protein is predicted to be a molecular chaperone, implying that there is a sophisticated mechanism for the assembly of this large complex. Among the 18 spoke proteins identified to date, at least 12 have apparent homologs in humans, indicating that the radial spoke has been conserved throughout evolution. The human genes encoding these proteins are candidates for causing primary ciliary dyskinesia, a severe inherited disease involving missing or defective axonemal structures, including the radial spokes
Chlamydomonas DYX1C1/PF23 is essential for axonemal assembly and proper morphology of inner dynein arms
Cytoplasmic assembly of ciliary dyneins, a process known as preassembly, requires numerous non-dynein proteins, but the identities and functions of these proteins are not fully elucidated. Here, we show that the classical Chlamydomonas motility mutant pf23 is defective in the Chlamydomonas homolog of DYX1C1. The pf23 mutant has a 494 bp deletion in the DYX1C1 gene and expresses a shorter DYX1C1 protein in the cytoplasm. Structural analyses, using cryo-ET, reveal that pf23 axonemes lack most of the inner dynein arms. Spectral counting confirms that DYX1C1 is essential for the assembly of the majority of ciliary inner dynein arms (IDA) as well as a fraction of the outer dynein arms (ODA). A C-terminal truncation of DYX1C1 shows a reduction in a subset of these ciliary IDAs. Sucrose gradients of cytoplasmic extracts show that preassembled ciliary dyneins are reduced compared to wild-type, which suggests an important role in dynein complex stability. The role of PF23/DYX1C1 remains unknown, but we suggest that DYX1C1 could provide a scaffold for macromolecular assembly
Towards a Formal Verification Methodology for Collective Robotic Systems
We introduce a UML-based notation for graphically modeling
systemsā security aspects in a simple and intuitive
way and a model-driven process that transforms graphical
specifications of access control policies in XACML. These
XACML policies are then translated in FACPL, a policy
language with a formal semantics, and the resulting policies
are evaluated by means of a Java-based software tool
Geometric analysis of satellite laser ranging data
The analysis of simultaneous laser data is investigated using the method of trilateration. Analysis of data from 1987 to 1992 is presented with selected baseline rates and station positions. The use of simultaneous Etalon data is simulated to demonstrate the additional global coverage these satellites provide. Trilateration has a great potential for regional deformation studies with monthly LAGEOS American solutions between 3-12 millimeters
The IDA3 adapter, required for intraflagellar transport of I1 dynein, is regulated by ciliary length
Axonemal dyneins, including inner dynein arm I1, assemble in the cytoplasm prior to transport into cilia by intraflagellar transport (IFT). How I1 dynein interacts with IFT is not understood. We take advantage of the Chlamydomonas reinhardtii ida3 mutant, which assembles the inner arm I1 dynein complex in the cytoplasm but fails to transport I1 into the cilium, resulting in I1 dynein-deficient axonemes with abnormal motility. The IDA3 gene encodes an ā¼115-kDa coiled-coil protein that primarily enters the cilium during ciliary growth but is not an axonemal protein. During growth, IDA3, along with I1 dynein, is transported by anterograde IFT to the tip of the cilium. At the tip, IDA3 uncouples from IFT and diffuses within the cilium. IFT transport of IDA3 decreases as cilia lengthen and subsides once full length is achieved. IDA3 is the first example of an essential and selective IFT adapter that is regulated by ciliary length. </jats:p
Field reconstruction in large aperture quadrupole magnets
A technique to interpolate complex three-dimensional field distributions such as those produced by large magnets is presented. It is based on a modified charge density method where the elementary sources of the magnetic field are image charges with Gaussian shape placed on a three-dimensional surface. The strengths of the charges are found as the solution of a best-fit problem, whose special features are discussed in detail. The method is tested against the measured field of the MAGNEX large acceptance quadrupole, showing a high level of accuracy together with an effective compensation of the effect of the experimental errors present in the data. In addition the model field is in general analytical and Maxwellian. As a consequence, the reliability of the presented technique to the challenging problem of trajectory reconstruction in modern large acceptance spectrometers is demonstrated
- ā¦