124 research outputs found

    Continental flood basalts derived from the hydrous mantle transition zone

    Get PDF
    It has previously been postulated that the Earth's hydrous mantle transition zone may play a key role in intraplate magmatism, but no confirmatory evidence has been reported. Here we demonstrate that hydrothermally altered subducted oceanic crust was involved in generating the late Cenozoic Chifeng continental flood basalts of East Asia. This study combines oxygen isotopes with conventional geochemistry to provide evidence for an origin in the hydrous mantle transition zone. These observations lead us to propose an alternative thermochemical model, whereby slab-triggered wet upwelling produces large volumes of melt that may rise from the hydrous mantle transition zone. This model explains the lack of pre-magmatic lithospheric extension or a hotspot track and also the arc-like signatures observed in some large-scale intracontinental magmas. Deep-Earth water cycling, linked to cold subduction, slab stagnation, wet mantle upwelling and assembly/breakup of supercontinents, can potentially account for the chemical diversity of many continental flood basalts

    Species-specific consequences of an E40K missense mutation in superoxide dismutase 1 (SOD1)

    Get PDF
    A glutamic acid to lysine (E40K) residue substitution in superoxide dismutase 1 (SOD1) is associated with canine degenerative myelopathy: the only naturally occurring large animal model of amyotrophic lateral sclerosis (ALS). The E40 residue is highly conserved across mammals, except the horse, which naturally carries the (dog mutant) K40 residue. Here we hypothesized that in vitro expression of mutant dog SOD1 would recapitulate features of human ALS (ie, SOD1 protein aggregation, reduced cell viability, perturbations in mitochondrial morphology and membrane potential, reduced ATP production, and increased superoxide ion levels); further, we hypothesized that an equivalent equine SOD1 variant would share similar perturbations in vitro, thereby explain horses’ susceptibility to certain neurodegenerative diseases. As in human ALS, expression of mutant dog SOD1 was associated with statistically significant increased aggregate formation, raised superoxide levels (ROS), and altered mitochondrial morphology (increased branching (form factor)), when compared to wild‐type dog SOD1‐expressing cells. Similar deficits were not detected in cells expressing the equivalent horse SOD1 variant. Our data helps explain the ALS‐associated cellular phenotype of dogs expressing the mutant SOD1 protein and reveals that species‐specific sequence conservation does not necessarily predict pathogenicity. The work improves understanding of the etiopathogenesis of canine degenerative myelopathy

    The role of Central Asian uplift in East Asian Monsoon circulation and its palaeoclimate implication

    Get PDF
    It has been clearly established that the climate of Asia is significantly affected by high-elevation orogens such as the Tibetan Plateau, Mongolian Plateau and Tian-Shan. The East Asian Monsoon (EAM), one of the most prominent features of Asian climate, has been well studied in a modern context and its dynamics are generally well understood. However, specific features of the EAM are less studied and understood in a palaeoclimate context, largely because of associated uncertainties in palaeotopography for the Cenozoic era. Here, we investigate changes in the individual stages of the EAM in response to increasing topography over Central Asia. We perform a series of sensitivity experiments with different palaeogeographic elevations using a coupled ocean-atmosphere General Circulation Model (HadCM3), to investigate seasonal variability of the EAM, and investigate the emergent critical threshold in elevation where the patterns of atmospheric circulation and climate over Asia attains the characteristics observed in the modern climate system. Our results indicate that above an elevation threshold of 3000 m, EAM circulation follows the modern pattern, but below that threshold, EAM circulation and precipitation follow a distinctly different pattern, where the westerly jet does not propagate into the higher latitudes and monsoonal precipitation is limited to June and July. This shift in circulation pattern has important implications for the successful interpretation of proxy-based palaeoclimate and environmental reconstructions. In addition, our results emphasize the importance of the latitudinal position of high-elevation on the EAM circulation, by showing that low-elevation can produce modern-like EAM conditions, if located at different latitudes than modern

    Basin evolution within and adjacent to the Tien Shan Range, NW China.

    No full text
    corecore